|
import subprocess |
|
import os |
|
|
|
os.environ["CUDA_HOME"] = "/usr/local/cuda-11.8/" |
|
subprocess.run(['pip', 'install', '-e', 'GroundingDINO']) |
|
os.system("wget https://huggingface.co/ShilongLiu/GroundingDINO/resolve/main/groundingdino_swint_ogc.pth") |
|
os.system("wget https://huggingface.co/spaces/mrtlive/segment-anything-model/resolve/main/sam_vit_h_4b8939.pth") |
|
|
|
import gradio as gr |
|
from dino_sam import sam_dino_vid |
|
|
|
CSV_PATH = "" |
|
VID_PATH = "" |
|
|
|
def run_sam_dino(input_vid, |
|
grounding_caption, |
|
box_threshold, |
|
text_threshold, |
|
fps_processed, |
|
video_options): |
|
csv_path, vid_path = sam_dino_vid(input_vid, grounding_caption, box_threshold, text_threshold, fps_processed, video_options) |
|
global CSV_PATH |
|
CSV_PATH = csv_path |
|
global VID_PATH |
|
VID_PATH = vid_path |
|
return vid_path |
|
|
|
def vid_download(): |
|
""" |
|
""" |
|
print(CSV_PATH, VID_PATH) |
|
return [CSV_PATH, VID_PATH] |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.HTML( |
|
""" |
|
<h1 align="center" style="font-size:xxx-large">🦍 Primate Detection</h1> |
|
""" |
|
) |
|
|
|
gr.HTML( |
|
""" |
|
<p="left"> |
|
The csv contains frame numbers and timestamps, bounding box coordinates, and number of detections per frame.</p> |
|
""" |
|
) |
|
with gr.Row(): |
|
with gr.Column(): |
|
input = gr.Video(label="Input Video", interactive=True) |
|
grounding_caption = gr.Textbox(label="What do you want to detect?") |
|
with gr.Accordion("Advanced Options", open=False): |
|
box_threshold = gr.Slider( |
|
label="Box Threshold", |
|
info="Adjust the threshold to change the sensitivity of the model, lower thresholds being more sensitive.", |
|
minimum=0.0, |
|
maximum=1.0, |
|
value=0.25, |
|
step=0.01 |
|
) |
|
text_threshold = gr.Slider( |
|
label="Text Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.01 |
|
) |
|
fps_processed = gr.Slider( |
|
label="Frame Detection Rate", |
|
info="Adjust the frame detection rate. I.e. a value of 120 will run detection every 120 frames, a value of 1 will run detection on every frame. Note: the lower the number the slower the processing time.", |
|
minimum=1, |
|
maximum=120, |
|
value=3, |
|
step=1) |
|
video_options = gr.CheckboxGroup(choices=["Bounding boxes", "Masks"], |
|
label="Video Output Options", |
|
info="Select the options to display in the output video.", |
|
value=["Bounding boxes"], |
|
interactive=True) |
|
|
|
|
|
run_btn = gr.Button(value="Run Detection", visible=True) |
|
with gr.Column(): |
|
vid = gr.Video(label="Output Video", height=350, interactive=False, visible=True) |
|
|
|
download_file = gr.Files(label="CSV, Video Output", interactive=False) |
|
|
|
run_btn.click(fn=run_sam_dino, inputs=[input, grounding_caption, box_threshold, text_threshold, fps_processed, video_options], outputs=[vid]) |
|
vid.change(fn=vid_download, outputs=download_file) |
|
|
|
gr.Examples( |
|
[["baboon_15s.mp4", "baboon", 0.25, 0.25, 1, ["Bounding boxes", "Masks"]]], |
|
inputs = [input, grounding_caption, box_threshold, text_threshold, fps_processed, video_options], |
|
outputs = [vid], |
|
fn=run_sam_dino, |
|
cache_examples=True, |
|
label='Example' |
|
) |
|
|
|
demo.launch(share=False) |