File size: 7,148 Bytes
130c728
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa38253
130c728
aa38253
 
 
 
 
 
 
 
 
 
 
3db8a39
aa81522
3db8a39
 
 
 
 
 
52e3d62
3db8a39
 
52e3d62
3db8a39
130c728
 
52e3d62
 
130c728
 
73600fd
130c728
 
 
 
 
fb20557
130c728
 
2085d31
 
 
130c728
2085d31
130c728
 
 
cd95bca
a327111
130c728
 
 
 
aa38253
2085d31
130c728
a327111
aa38253
 
 
 
 
 
 
 
 
 
 
 
 
 
52e369f
aa38253
52e369f
73600fd
52e369f
fcce9ea
73600fd
 
 
 
 
 
a327111
 
73600fd
 
 
 
aa38253
 
 
 
 
 
 
 
130c728
 
cd95bca
 
130c728
 
 
 
cd95bca
 
 
 
 
 
 
 
 
73600fd
 
130c728
cd95bca
 
 
 
 
 
 
130c728
 
cd95bca
73600fd
130c728
aa38253
130c728
 
cd95bca
 
130c728
 
 
cd95bca
130c728
cd95bca
 
 
130c728
 
 
cd95bca
 
130c728
cd95bca
 
 
 
 
 
 
 
 
 
130c728
 
cd95bca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a327111
 
 
 
 
 
130c728
a327111
130c728
 
73600fd
130c728
 
 
 
 
 
89c250e
130c728
 
 
89c250e
130c728
89c250e
130c728
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import transformers
import re
from transformers import AutoConfig, AutoTokenizer, AutoModel, AutoModelForCausalLM
import torch
import gradio as gr
import json
import os
import shutil
import requests
import lancedb
import pandas as pd

# Define the device
device = "cuda" if torch.cuda.is_available() else "cpu"

model_name = "PleIAs/Pleias-Rag"

# Get Hugging Face token from environment variable
hf_token = os.environ.get('HF_TOKEN')
if not hf_token:
    raise ValueError("Please set the HF_TOKEN environment variable")

# Initialize model and tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name, token=hf_token)
model = AutoModelForCausalLM.from_pretrained(model_name, token=hf_token)
model.to(device)

# Set tokenizer configuration

tokenizer.eos_token = "<|answer_end|>"
eos_token_id=tokenizer.eos_token_id
tokenizer.pad_token = tokenizer.eos_token
tokenizer.pad_token_id = 1

# Define variables 
temperature = 0.0  
max_new_tokens = 1400
top_p = 0.95
repetition_penalty = 1.0
min_new_tokens = 700
early_stopping = False

# Connect to the LanceDB database
db = lancedb.connect("content 19/lancedb_data")
table = db.open_table("edunat19")

def hybrid_search(text):
    results = table.search(text, query_type="hybrid").limit(5).to_pandas()

    document = []
    document_html = []
    for _, row in results.iterrows():
        hash_id = str(row['hash'])
        title = row['section']
        content = row['text']

        document.append(f"<|source_start|><|source_id_start|>{hash_id}<|source_id_end|>{title}\n{content}<|source_end|>")
        
        document_html.append(f'<div class="source" id="{hash_id}"><p><b>{hash_id}</b> : {title}<br>{content}</div>')

    document = "\n".join(document)
    document_html = '<div id="source_listing">' + "".join(document_html) + "</div>"
    return document, document_html

class pleiasBot:
    def __init__(self, system_prompt="Tu es Appli, un asistant de recherche qui donne des responses sourcées"):
        self.system_prompt = system_prompt

    def predict(self, user_message):
        fiches, fiches_html = hybrid_search(user_message)
        
        detailed_prompt = f"""<|query_start|>{user_message}<|query_end|>\n{fiches}\n<|source_analysis_start|>"""

        # Convert inputs to tensor
        input_ids = tokenizer.encode(detailed_prompt, return_tensors="pt").to(device)
        attention_mask = torch.ones_like(input_ids)

        try:
            output = model.generate(
                input_ids,
                attention_mask=attention_mask,
                max_new_tokens=max_new_tokens,
                do_sample=False,
                early_stopping=early_stopping,
                min_new_tokens=min_new_tokens,
                temperature=temperature,
                repetition_penalty=repetition_penalty,
                pad_token_id=tokenizer.pad_token_id,
                eos_token_id=tokenizer.eos_token_id
            )

            # Decode the generated text
            generated_text = tokenizer.decode(output[0][len(input_ids[0]):])
            
            # Split the text into analysis and answer sections
            parts = generated_text.split("<|source_analysis_end|>")
            if len(parts) == 2:
                analysis = parts[0].strip()
                answer = parts[1].replace("<|answer_start|>", "").replace("<|answer_end|>", "").strip()
                
                # Format with section titles using strong tags for extra emphasis
                formatted_text = f'<div class="section-title"><strong>Sources Analysis</strong></div>\n\n{analysis}\n\n<div class="section-title"><strong>Answer</strong></div>\n\n{answer}'
            else:
                formatted_text = generated_text
            
            generated_text = '<h2 style="text-align:center">Réponse</h3>\n<div class="generation">' + format_references(formatted_text) + "</div>"
            fiches_html = '<h2 style="text-align:center">Sources</h3>\n' + fiches_html
            return generated_text, fiches_html

        except Exception as e:
            print(f"Error during generation: {str(e)}")
            import traceback
            traceback.print_exc()
            return None, None

def format_references(text):
    ref_pattern = r'<ref name="([^"]+)">"([^"]+)"</ref>'
    
    parts = []
    current_pos = 0
    ref_number = 1

    import re
    for match in re.finditer(ref_pattern, text):
        # Add text before the reference
        parts.append(text[current_pos:match.start()])
        
        # Extract reference components
        ref_id = match.group(1)  # The source ID
        ref_text = match.group(2).strip()  # The reference text
        
        # Create tooltip HTML with source ID in bold
        tooltip_html = f'<span class="tooltip">[{ref_number}]<span class="tooltiptext"><strong>{ref_id}</strong>: {ref_text}</span></span>'
        parts.append(tooltip_html)
        
        current_pos = match.end()
        ref_number += 1
    
    # Add any remaining text
    parts.append(text[current_pos:])
    
    return ''.join(parts)

# Initialize the pleiasBot
pleias_bot = pleiasBot()

# CSS for styling 
css = """
.generation {
    margin-left: 2em;
    margin-right: 2em;
}
:target {
    background-color: #CCF3DF;
}
.source {
    float: left;
    max-width: 17%;
    margin-left: 2%;
}
.tooltip {
    position: relative;
    display: inline-block;
    color: #2563eb;
    cursor: pointer;
}
.tooltip .tooltiptext {
    visibility: hidden;
    background-color: #fff;
    color: #000;
    text-align: left;
    padding: 12px;
    border-radius: 6px;
    border: 1px solid #e5e7eb;
    box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1), 0 2px 4px -1px rgba(0, 0, 0, 0.06);
    position: absolute;
    z-index: 1;
    bottom: 125%;
    left: 50%;
    transform: translateX(-50%);
    min-width: 300px;
    max-width: 400px;
    white-space: normal;
    font-size: 0.9em;
    line-height: 1.4;
}
.tooltip:hover .tooltiptext {
    visibility: visible;
}
.tooltip .tooltiptext::after {
    content: "";
    position: absolute;
    top: 100%;
    left: 50%;
    margin-left: -5px;
    border-width: 5px;
    border-style: solid;
    border-color: #fff transparent transparent transparent;
}
.section-title {
    font-weight: bold;
    font-size: 12px;
    margin-bottom: 1em;
    margin-top: 1em;
}
"""

# Gradio interface
def gradio_interface(user_message):
    response, sources = pleias_bot.predict(user_message)
    return response, sources

# Create Gradio app
demo = gr.Blocks(css=css)

with demo:
    gr.HTML("""<h1 style="text-align:center">pleias-RAG 1.0</h1>""")
    with gr.Row():
        with gr.Column(scale=2):
            text_input = gr.Textbox(label="Votre question ou votre instruction", lines=3)
            text_button = gr.Button("Interroger pleias-RAG")
        with gr.Column(scale=3):
            text_output = gr.HTML(label="La réponse de pleias-RAG")
    with gr.Row():
        embedding_output = gr.HTML(label="Les sources utilisées")
    
    text_button.click(gradio_interface, inputs=text_input, outputs=[text_output, embedding_output])

# Launch the app
if __name__ == "__main__":
    demo.launch()