Intrinsic / README.md
ccareaga's picture
Updated readme, added hf paper links
1fb8234 verified
---
title: Intrinsic
emoji: 🐢
colorFrom: blue
colorTo: red
sdk: gradio
sdk_version: 5.0.1
app_file: app.py
pinned: false
license: cc-by-nc-sa-4.0
---
# Intrinsic Image Decomposition
This space contains a demo for the following papers:
**Colorful Diffuse Intrinsic Image Decomposition in the Wild**, [Chris Careaga](https://ccareaga.github.io/) and [Yağız Aksoy](https://yaksoy.github.io), ACM Transactions on Graphics, 2024 \
[Project](https://yaksoy.github.io/ColorfulShading/) | [Paper](https://yaksoy.github.io/papers/TOG24-ColorfulShading.pdf) | [Supplementary](https://yaksoy.github.io/papers/TOG24-ColorfulShading-supp.pdf) | [HF](https://huggingface.co/papers/2409.13690)
**Intrinsic Image Decomposition via Ordinal Shading**, [Chris Careaga](https://ccareaga.github.io/) and [Yağız Aksoy](https://yaksoy.github.io), ACM Transactions on Graphics, 2023 \
[Project](https://yaksoy.github.io/intrinsic/) | [Paper](https://yaksoy.github.io/papers/TOG23-Intrinsic.pdf) | [Video](https://www.youtube.com/watch?v=pWtJd3hqL3c) | [Supplementary](https://yaksoy.github.io/papers/TOG23-Intrinsic-Supp.pdf) | [Data](https://github.com/compphoto/MIDIntrinsics) | [HF](https://huggingface.co/papers/2311.12792)
We propose a method for generating high-resolution intrinsic image decompositions for in-the-wild images. Our method consists of multiple stages. We first estimate a grayscale shading layer using our ordinal shading pipeline. We then estimate low-resolution chromaticity information to account for colorful illumination effects while maintaining global consistency. Using this initial colorful decomposition, we estimate a high-resolution, sparse albedo layer. We show that our decomposition allows us to train a diffuse shading estimation network using only a single rendered indoor dataset.
![representative](https://github.com/compphoto/Intrinsic/blob/main/figures/representative.png?raw=true)
Our estimated components unlock multiple illumination-aware editing operations such as per-pixel white balancing and specularity removal:
![applications](https://github.com/compphoto/Intrinsic/blob/main/figures/app_teaser2.jpg?raw=true)