chat-with-SFF / main.py
ccm's picture
Create main.py
b884aa9 verified
raw
history blame
6.28 kB
import threading # to allow streaming response
import time # to pave the deliver of the message
import gradio # for the interface
import spaces # for GPU
import transformers # to load an LLM
import langchain_community.vectorstores # to load the publication vectorstore
import langchain_huggingface # for embeddings
# The greeting message
GREETING = (
"Howdy! "
"I'm an AI agent that uses [retrieval-augmented generation](https://en.wikipedia.org/wiki/Retrieval-augmented_generation) pipeline to answer questions about additive manufacturing research. "
"I still make some mistakes though. "
"What can I tell you about today?"
)
# Example queries
EXAMPLE_QUERIES = [
"Tell me about new research at the intersection of additive manufacturing and machine learning.",
]
# The embedding model name
EMBEDDING_MODEL_NAME = "all-MiniLM-L12-v2"
# The LLM model name
LLM_MODEL_NAME = "Qwen/Qwen2.5-1.5B-Instruct"
# The number of publications to retrieve
PUBLICATIONS_TO_RETRIEVE = 5
def embedding(
model_name: str = "all-MiniLM-L12-v2",
device: str = "mps",
normalize_embeddings: bool = False,
) -> langchain_huggingface.HuggingFaceEmbeddings:
"""
Get the embedding function
:param model_name: The model name
:type model_name: str
:param device: The device to use
:type device: str
:param normalize_embeddings: Whether to normalize embeddings
:type normalize_embeddings: bool
:return: The embedding function
:rtype: langchain_huggingface.HuggingFaceEmbeddings
"""
return langchain_huggingface.HuggingFaceEmbeddings(
model_name=model_name,
model_kwargs={"device": device},
encode_kwargs={"normalize_embeddings": normalize_embeddings},
)
def load_publication_vectorstore() -> langchain_community.vectorstores.FAISS:
"""
Load the publication vectorstore
:return: The publication vectorstore
:rtype: langchain_community.vectorstores.FAISS
"""
return langchain_community.vectorstores.FAISS.load_local(
folder_path="publication_vectorstore",
embeddings=embedding(),
allow_dangerous_deserialization=True,
)
publication_vectorstore = load_publication_vectorstore()
# Create an LLM pipeline that we can send queries to
tokenizer = transformers.AutoTokenizer.from_pretrained(
LLM_MODEL_NAME, trust_remote_code=True
)
streamer = transformers.TextIteratorStreamer(
tokenizer, skip_prompt=True, skip_special_tokens=True
)
chatmodel = transformers.AutoModelForCausalLM.from_pretrained(
LLM_MODEL_NAME, device_map="auto", torch_dtype="auto", trust_remote_code=True
)
def preprocess(query: str, k: int) -> tuple[str, str]:
"""
Searches the dataset for the top k most relevant papers to the query and returns a prompt and references
Args:
query (str): The user's query
k (int): The number of results to return
Returns:
tuple[str, str]: A tuple containing the prompt and references
"""
documents = publication_vectorstore.search(
query, k=PUBLICATIONS_TO_RETRIEVE, search_type="similarity"
)
prompt = (
"You are an AI assistant who delights in helping people learn about research from the Design Research Collective, which is a research lab at Carnegie Mellon University led by Professor Chris McComb. "
"Your main task is to provide a concise ANSWER to the USER_QUERY that includes as many of the RESEARCH_ABSTRACTS as possible. "
"The RESEARCH_ABSTRACTS are provided in the `.bibtex` format. Your ANSWER should contain citations to the RESEARCH_ABSTRACTS using (AUTHOR, YEAR) format. "
"DO NOT list references at the end of the answer.\n\n"
"===== RESEARCH_EXCERPTS =====:\n{{EXCERPTS_GO_HERE}}\n\n"
"===== USER_QUERY =====:\n{{QUERY_GOES_HERE}}\n\n"
"===== ANSWER =====:\n"
)
research_excerpts = [
'"... ' + document.page_content + '..."' for document in documents
]
prompt = prompt.replace("{{EXCERPTS_GO_HERE}}", "\n\n".join(research_excerpts))
prompt = prompt.replace("{{QUERY_GOES_HERE}}", query)
print(prompt)
return prompt, ""
@spaces.GPU
def reply(message: str, history: list[str]) -> str:
"""
This function is responsible for crafting a response
Args:
message (str): The user's message
history (list[str]): The conversation history
Returns:
str: The AI's response
"""
# Apply preprocessing
message, bypass = preprocess(message, PUBLICATIONS_TO_RETRIEVE)
# This is some handling that is applied to the history variable to put it in a good format
history_transformer_format = [
{"role": role, "content": message_pair[idx]}
for message_pair in history
for idx, role in enumerate(["user", "assistant"])
if message_pair[idx] is not None
] + [{"role": "user", "content": message}]
# Stream a response from pipe
text = tokenizer.apply_chat_template(
history_transformer_format, tokenize=False, add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to("cuda:0")
generate_kwargs = dict(model_inputs, streamer=streamer, max_new_tokens=512)
t = threading.Thread(target=chatmodel.generate, kwargs=generate_kwargs)
t.start()
partial_message = ""
for new_token in streamer:
if new_token != "<":
partial_message += new_token
time.sleep(0.01)
yield partial_message
yield partial_message + "\n\n" + bypass
# Create and run the gradio interface
gradio.ChatInterface(
reply,
examples=EXAMPLE_QUERIES,
chatbot=gradio.Chatbot(
show_label=False,
show_share_button=False,
show_copy_button=False,
value=[[None, GREETING]],
avatar_images=(
"https://cdn.dribbble.com/users/316121/screenshots/2333676/11-04_scotty-plaid_dribbble.png",
"https://media.thetab.com/blogs.dir/90/files/2021/06/screenshot-2021-06-10-at-110730-1024x537.png",
),
height="60vh",
bubble_full_width=False,
),
retry_btn=None,
undo_btn=None,
clear_btn=None,
theme=gradio.themes.Default(font=[gradio.themes.GoogleFont("Zilla Slab")]),
).launch(debug=True)