CNPM / app.py
admin
upl base
dcfb67c
raw
history blame
4.88 kB
import os
import torch
import random
import shutil
import librosa
import warnings
import numpy as np
import gradio as gr
import librosa.display
import matplotlib.pyplot as plt
from utils import get_modelist, find_audio_files, embed_img, TEMP_DIR
from model import EvalNet
TRANSLATE = {
"Gong": "宫",
"Shang": "商",
"Jue": "角",
"Zhi": "徵",
"Yu": "羽",
}
CLASSES = list(TRANSLATE.keys())
SAMPLE_RATE = 44100
def zero_padding(y: np.ndarray, end: int):
size = len(y)
if size < end:
return np.concatenate((y, np.zeros(end - size)))
elif size > end:
return y[-end:]
return y
def audio2mel(audio_path: str, seg_len=20):
os.makedirs(TEMP_DIR, exist_ok=True)
try:
y, sr = librosa.load(audio_path, sr=SAMPLE_RATE)
y = zero_padding(y, seg_len * sr)
mel_spec = librosa.feature.melspectrogram(y=y, sr=sr)
log_mel_spec = librosa.power_to_db(mel_spec, ref=np.max)
librosa.display.specshow(log_mel_spec)
plt.axis("off")
plt.savefig(
f"{TEMP_DIR}/output.jpg",
bbox_inches="tight",
pad_inches=0.0,
)
plt.close()
except Exception as e:
print(f"Error converting {audio_path} : {e}")
def audio2cqt(audio_path: str, seg_len=20):
os.makedirs(TEMP_DIR, exist_ok=True)
try:
y, sr = librosa.load(audio_path, sr=SAMPLE_RATE)
y = zero_padding(y, seg_len * sr)
cqt_spec = librosa.cqt(y=y, sr=sr)
log_cqt_spec = librosa.power_to_db(np.abs(cqt_spec) ** 2, ref=np.max)
librosa.display.specshow(log_cqt_spec)
plt.axis("off")
plt.savefig(
f"{TEMP_DIR}/output.jpg",
bbox_inches="tight",
pad_inches=0.0,
)
plt.close()
except Exception as e:
print(f"Error converting {audio_path} : {e}")
def audio2chroma(audio_path: str, seg_len=20):
os.makedirs(TEMP_DIR, exist_ok=True)
try:
y, sr = librosa.load(audio_path, sr=SAMPLE_RATE)
y = zero_padding(y, seg_len * sr)
chroma_spec = librosa.feature.chroma_stft(y=y, sr=sr)
log_chroma_spec = librosa.power_to_db(np.abs(chroma_spec) ** 2, ref=np.max)
librosa.display.specshow(log_chroma_spec)
plt.axis("off")
plt.savefig(
f"{TEMP_DIR}/output.jpg",
bbox_inches="tight",
pad_inches=0.0,
)
plt.close()
except Exception as e:
print(f"Error converting {audio_path} : {e}")
def infer(wav_path: str, log_name: str, folder_path=TEMP_DIR):
if os.path.exists(folder_path):
shutil.rmtree(folder_path)
if not wav_path:
return None, "请输入音频 Please input an audio!"
try:
model = EvalNet(log_name, len(TRANSLATE)).model
except Exception as e:
return None, f"{e}"
spec = log_name.split("_")[-3]
eval("audio2%s" % spec)(wav_path)
input = embed_img(f"{folder_path}/output.jpg")
output: torch.Tensor = model(input)
pred_id = torch.max(output.data, 1)[1]
return (
os.path.basename(wav_path),
f"{TRANSLATE[CLASSES[pred_id]]} ({CLASSES[pred_id].capitalize()})",
)
if __name__ == "__main__":
warnings.filterwarnings("ignore")
models = get_modelist()
examples = []
example_audios = find_audio_files()
model_num = len(models)
for audio in example_audios:
examples.append([audio, models[random.randint(0, model_num - 1)]])
with gr.Blocks() as demo:
gr.Interface(
fn=infer,
inputs=[
gr.Audio(label="上传录音 Upload a recording", type="filepath"),
gr.Dropdown(
choices=models, label="选择模型 Select a model", value=models[0]
),
],
outputs=[
gr.Textbox(label="音频文件名 Audio filename", show_copy_button=True),
gr.Textbox(
label="中国五声调式识别 Chinese pentatonic mode recognition",
show_copy_button=True,
),
],
examples=examples,
cache_examples=False,
flagging_mode="never",
title="建议录音时长保持在 20s 左右<br>It is recommended to keep the recording length around 20s.",
)
gr.Markdown(
"""
# 引用 Cite
```bibtex
@dataset{zhaorui_liu_2021_5676893,
author = {Monan Zhou, Shenyang Xu, Zhaorui Liu, Zhaowen Wang, Feng Yu, Wei Li and Baoqiang Han},
title = {CCMusic: an Open and Diverse Database for Chinese Music Information Retrieval Research},
month = {mar},
year = {2024},
publisher = {HuggingFace},
version = {1.2},
url = {https://huggingface.co/ccmusic-database}
}
```"""
)
demo.launch()