PSU-MEPO-24 / app.py
cdancy's picture
took debug off of demo launch call
e3d3510
raw
history blame
8.63 kB
import os
from threading import Thread
from typing import Iterator
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, TextStreamer
from llama_index.core.prompts.prompts import SimpleInputPrompt
from llama_index.llms.huggingface import HuggingFaceLLM
from llama_index.legacy.embeddings.langchain import LangchainEmbedding
#from langchain.embeddings.huggingface import HuggingFaceEmbeddings # This import should now work
from langchain_huggingface import HuggingFaceEmbeddings
from sentence_transformers import SentenceTransformer
from llama_index.core import set_global_service_context, ServiceContext
from llama_index.core import VectorStoreIndex, download_loader, Document # Import Document
from pathlib import Path
import fitz # PyMuPDF
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 512
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
DEFAULT_SYS_PROMPT = """\
"""
DESCRIPTION = """\
# Test Chat Information System for MEPO 2024 courtesy of Dr. Dancy & THiCC Lab
Duplicated, then modified from [llama-2 7B example](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat)
"""
LICENSE = """
<p/>
---
As a derivate work of [Llama-2-7b-chat](https://huggingface.co/meta-llama/Llama-2-7b-chat) by Meta,
this demo is governed by the original [license](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat/blob/main/LICENSE.txt) and [acceptable use policy](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat/blob/main/USE_POLICY.md).
"""
SYSTEM_PROMPT = """<s>[INST] <<SYS>>
<</SYS>>"""
def read_pdf_to_documents(file_path):
doc = fitz.open(file_path)
documents = []
for page_num in range(len(doc)):
page = doc.load_page(page_num)
text = page.get_text()
documents.append(Document(text=text)) # Now Document is defined
return documents
# Function to update the global system prompt
def update_system_prompt(new_prompt):
global SYSTEM_PROMPT
SYSTEM_PROMPT = new_prompt
query_wrapper_prompt = SimpleInputPrompt("{query_str} [/INST]")
return "System prompt updated."
@spaces.GPU(duration=240)
def query_model(question):
llm = HuggingFaceLLM(
context_window=4096,
max_new_tokens=256,
system_prompt=SYSTEM_PROMPT,
query_wrapper_prompt=query_wrapper_prompt,
model=model,
tokenizer=tokenizer
)
#embeddings = LangchainEmbedding(HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2"))
service_context = ServiceContext.from_defaults(chunk_size=1024, llm=llm, embed_model=embeddings)
set_global_service_context(service_context)
response = query_engine.query(question)
# formatted_response = format_paragraph(response.response)
return response.response
def format_paragraph(text, line_length=80):
words = text.split()
lines = []
current_line = []
current_length = 0
for word in words:
if current_length + len(word) + 1 > line_length:
lines.append(' '.join(current_line))
current_line = [word]
current_length = len(word) + 1
else:
current_line.append(word)
current_length += len(word) + 1
if current_line:
lines.append(' '.join(current_line))
return '\n'.join(lines)
if not torch.cuda.is_available():
DESCRIPTION += "We won't be able to run this space! We need GPU processing"
if torch.cuda.is_available():
model_id = "meta-llama/Llama-2-7b-chat-hf"
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.use_default_system_prompt = False
# Throw together the query wrapper
query_wrapper_prompt = SimpleInputPrompt("{query_str} [/INST]")
llm = HuggingFaceLLM(context_window=4096,
max_new_tokens=256,
system_prompt=SYSTEM_PROMPT,
query_wrapper_prompt=query_wrapper_prompt,
model=model, tokenizer=tokenizer)
embeddings = LangchainEmbedding(HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2"))
service_context = ServiceContext.from_defaults(chunk_size=1024, llm=llm, embed_model=embeddings)
set_global_service_context(service_context)
file_path = Path("files/Full Pamplet.pdf")
documents = read_pdf_to_documents(file_path)
index = VectorStoreIndex.from_documents(documents)
query_engine = index.as_query_engine()
update_prompt_interface = gr.Interface(
fn=update_system_prompt,
inputs=gr.Textbox(lines=5, placeholder="Enter the system prompt here...", label="System Prompt", value=SYSTEM_PROMPT),
outputs=gr.Textbox(label="Status"),
title="System Prompt Updater",
description="Update the system prompt used for context."
)
# Create Gradio interface for querying the model
query_interface = gr.Interface(
fn=query_model,
inputs=gr.Textbox(lines=2, placeholder="Enter your question here...", label="User Question"),
outputs=gr.Textbox(label="Response"),
title="Document Query Assistant",
description="Ask questions based on the content of the loaded pamphlet."
)
# Combine the interfaces
combined_interface = gr.TabbedInterface([update_prompt_interface, query_interface], ["Update System Prompt", "Query Assistant"])
# Launch the combined interface
#combined_interface.launch()
"""
@spaces.GPU(duration=240)
def generate(
message: str,
chat_history: list[tuple[str, str]],
system_prompt: str,
max_new_tokens: int = MAX_MAX_NEW_TOKENS,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
) -> Iterator[str]:
conversation = []
if system_prompt:
conversation.append({"role": "system", "content": system_prompt})
for user, assistant in chat_history:
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
repetition_penalty=repetition_penalty,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
chat_interface = gr.ChatInterface(
fn=generate,
additional_inputs=[
gr.Textbox(label="System prompt", lines=6),
gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
gr.Slider(
label="Temperature",
minimum=0.1,
maximum=4.0,
step=0.1,
value=0.6,
),
gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.9,
),
gr.Slider(
label="Top-k",
minimum=1,
maximum=1000,
step=1,
value=50,
),
gr.Slider(
label="Repetition penalty",
minimum=1.0,
maximum=2.0,
step=0.05,
value=1.2,
),
],
stop_btn=None,
examples=[
["Hello there! How are you doing?"],
["Can you explain briefly to me what is the Python programming language?"],
["Explain the plot of Cinderella in a sentence."],
["How many hours does it take a man to eat a Helicopter?"],
["Write a 100-word article on 'Benefits of Open-Source in AI research'"],
],
)
"""
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
#chat_interface.render()
combined_interface.render()
gr.Markdown(LICENSE)
if __name__ == "__main__":
demo.queue(max_size=20).launch()