Spaces:
Runtime error
Runtime error
import os | |
from threading import Thread | |
from typing import Iterator | |
import gradio as gr | |
import spaces | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, TextStreamer | |
from llama_index.core.prompts.prompts import SimpleInputPrompt | |
from llama_index.llms.huggingface import HuggingFaceLLM | |
from llama_index.legacy.embeddings.langchain import LangchainEmbedding | |
#from langchain.embeddings.huggingface import HuggingFaceEmbeddings # This import should now work | |
from langchain_huggingface import HuggingFaceEmbeddings | |
from sentence_transformers import SentenceTransformer | |
from llama_index.core import set_global_service_context, ServiceContext | |
from llama_index.core import VectorStoreIndex, download_loader, Document # Import Document | |
from pathlib import Path | |
import fitz # PyMuPDF | |
MAX_MAX_NEW_TOKENS = 2048 | |
DEFAULT_MAX_NEW_TOKENS = 512 | |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
DEFAULT_SYS_PROMPT = """\ | |
""" | |
DESCRIPTION = """\ | |
# Test Chat Information System for MEPO 2024 courtesy of Dr. Dancy & THiCC Lab | |
Duplicated, then modified from [llama-2 7B example](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat) | |
""" | |
LICENSE = """ | |
<p/> | |
--- | |
As a derivate work of [Llama-2-7b-chat](https://huggingface.co/meta-llama/Llama-2-7b-chat) by Meta, | |
this demo is governed by the original [license](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat/blob/main/LICENSE.txt) and [acceptable use policy](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat/blob/main/USE_POLICY.md). | |
""" | |
SYSTEM_PROMPT = """<s>[INST] <<SYS>> | |
<</SYS>>""" | |
def read_pdf_to_documents(file_path): | |
doc = fitz.open(file_path) | |
documents = [] | |
for page_num in range(len(doc)): | |
page = doc.load_page(page_num) | |
text = page.get_text() | |
documents.append(Document(text=text)) # Now Document is defined | |
return documents | |
# Function to update the global system prompt | |
def update_system_prompt(new_prompt): | |
global SYSTEM_PROMPT | |
SYSTEM_PROMPT = new_prompt | |
query_wrapper_prompt = SimpleInputPrompt("{query_str} [/INST]") | |
return "System prompt updated." | |
def query_model(question): | |
llm = HuggingFaceLLM( | |
context_window=4096, | |
max_new_tokens=256, | |
system_prompt=SYSTEM_PROMPT, | |
query_wrapper_prompt=query_wrapper_prompt, | |
model=model, | |
tokenizer=tokenizer | |
) | |
#embeddings = LangchainEmbedding(HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")) | |
service_context = ServiceContext.from_defaults(chunk_size=1024, llm=llm, embed_model=embeddings) | |
set_global_service_context(service_context) | |
response = query_engine.query(question) | |
# formatted_response = format_paragraph(response.response) | |
return response.response | |
def format_paragraph(text, line_length=80): | |
words = text.split() | |
lines = [] | |
current_line = [] | |
current_length = 0 | |
for word in words: | |
if current_length + len(word) + 1 > line_length: | |
lines.append(' '.join(current_line)) | |
current_line = [word] | |
current_length = len(word) + 1 | |
else: | |
current_line.append(word) | |
current_length += len(word) + 1 | |
if current_line: | |
lines.append(' '.join(current_line)) | |
return '\n'.join(lines) | |
if not torch.cuda.is_available(): | |
DESCRIPTION += "We won't be able to run this space! We need GPU processing" | |
if torch.cuda.is_available(): | |
model_id = "meta-llama/Llama-2-7b-chat-hf" | |
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto") | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
tokenizer.use_default_system_prompt = False | |
# Throw together the query wrapper | |
query_wrapper_prompt = SimpleInputPrompt("{query_str} [/INST]") | |
llm = HuggingFaceLLM(context_window=4096, | |
max_new_tokens=256, | |
system_prompt=SYSTEM_PROMPT, | |
query_wrapper_prompt=query_wrapper_prompt, | |
model=model, tokenizer=tokenizer) | |
embeddings = LangchainEmbedding(HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")) | |
service_context = ServiceContext.from_defaults(chunk_size=1024, llm=llm, embed_model=embeddings) | |
set_global_service_context(service_context) | |
file_path = Path("files/Full Pamplet.pdf") | |
documents = read_pdf_to_documents(file_path) | |
index = VectorStoreIndex.from_documents(documents) | |
query_engine = index.as_query_engine() | |
update_prompt_interface = gr.Interface( | |
fn=update_system_prompt, | |
inputs=gr.Textbox(lines=5, placeholder="Enter the system prompt here...", label="System Prompt", value=SYSTEM_PROMPT), | |
outputs=gr.Textbox(label="Status"), | |
title="System Prompt Updater", | |
description="Update the system prompt used for context." | |
) | |
# Create Gradio interface for querying the model | |
query_interface = gr.Interface( | |
fn=query_model, | |
inputs=gr.Textbox(lines=2, placeholder="Enter your question here...", label="User Question"), | |
outputs=gr.Textbox(label="Response"), | |
title="Document Query Assistant", | |
description="Ask questions based on the content of the loaded pamphlet." | |
) | |
# Combine the interfaces | |
combined_interface = gr.TabbedInterface([update_prompt_interface, query_interface], ["Update System Prompt", "Query Assistant"]) | |
# Launch the combined interface | |
#combined_interface.launch() | |
""" | |
@spaces.GPU(duration=240) | |
def generate( | |
message: str, | |
chat_history: list[tuple[str, str]], | |
system_prompt: str, | |
max_new_tokens: int = MAX_MAX_NEW_TOKENS, | |
temperature: float = 0.6, | |
top_p: float = 0.9, | |
top_k: int = 50, | |
repetition_penalty: float = 1.2, | |
) -> Iterator[str]: | |
conversation = [] | |
if system_prompt: | |
conversation.append({"role": "system", "content": system_prompt}) | |
for user, assistant in chat_history: | |
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) | |
conversation.append({"role": "user", "content": message}) | |
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt") | |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: | |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] | |
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") | |
input_ids = input_ids.to(model.device) | |
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
{"input_ids": input_ids}, | |
streamer=streamer, | |
max_new_tokens=max_new_tokens, | |
do_sample=True, | |
top_p=top_p, | |
top_k=top_k, | |
temperature=temperature, | |
num_beams=1, | |
repetition_penalty=repetition_penalty, | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
outputs = [] | |
for text in streamer: | |
outputs.append(text) | |
yield "".join(outputs) | |
chat_interface = gr.ChatInterface( | |
fn=generate, | |
additional_inputs=[ | |
gr.Textbox(label="System prompt", lines=6), | |
gr.Slider( | |
label="Max new tokens", | |
minimum=1, | |
maximum=MAX_MAX_NEW_TOKENS, | |
step=1, | |
value=DEFAULT_MAX_NEW_TOKENS, | |
), | |
gr.Slider( | |
label="Temperature", | |
minimum=0.1, | |
maximum=4.0, | |
step=0.1, | |
value=0.6, | |
), | |
gr.Slider( | |
label="Top-p (nucleus sampling)", | |
minimum=0.05, | |
maximum=1.0, | |
step=0.05, | |
value=0.9, | |
), | |
gr.Slider( | |
label="Top-k", | |
minimum=1, | |
maximum=1000, | |
step=1, | |
value=50, | |
), | |
gr.Slider( | |
label="Repetition penalty", | |
minimum=1.0, | |
maximum=2.0, | |
step=0.05, | |
value=1.2, | |
), | |
], | |
stop_btn=None, | |
examples=[ | |
["Hello there! How are you doing?"], | |
["Can you explain briefly to me what is the Python programming language?"], | |
["Explain the plot of Cinderella in a sentence."], | |
["How many hours does it take a man to eat a Helicopter?"], | |
["Write a 100-word article on 'Benefits of Open-Source in AI research'"], | |
], | |
) | |
""" | |
with gr.Blocks(css="style.css") as demo: | |
gr.Markdown(DESCRIPTION) | |
#chat_interface.render() | |
combined_interface.render() | |
gr.Markdown(LICENSE) | |
if __name__ == "__main__": | |
demo.queue(max_size=20).launch() | |