File size: 26,469 Bytes
7877864
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a5c611
7877864
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
263ccb8
7877864
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
263ccb8
7877864
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
import altair as alt
# import datetime
import joblib
import nltk
import numpy as np
import pandas as pd
import re
import streamlit as st 
import time

from gensim.corpora import Dictionary
from gensim.models import KeyedVectors, TfidfModel
from gensim.similarities import SoftCosineSimilarity, SparseTermSimilarityMatrix, WordEmbeddingSimilarityIndex
from io import BytesIO
from nltk import pos_tag, word_tokenize
from nltk.corpus import stopwords, wordnet
from nltk.stem import PorterStemmer, WordNetLemmatizer
from pandas.api.types import is_categorical_dtype, is_numeric_dtype
from PIL import Image
from scipy.sparse import csr_matrix, hstack

nltk.download('averaged_perceptron_tagger')
nltk.download('punkt')
nltk.download('stopwords')
nltk.download('wordnet')

stop_words = set(stopwords.words('english'))
lemmatizer = WordNetLemmatizer()
stemmer = PorterStemmer()

def addZeroFeatures(matrix):
    maxFeatures = 18038
    numDocs, numTerms = matrix.shape
    missingFeatures = maxFeatures - numTerms
    if missingFeatures > 0:
        zeroFeatures = csr_matrix((numDocs, missingFeatures), dtype=np.float64)
        matrix = hstack([matrix, zeroFeatures])
    return matrix

@st.cache_data(max_entries = 1, show_spinner = False)
def classifyResumes(df):
    # WITH PROGRESS BAR
    progressBar = st.progress(0)
    progressBar.progress(0, text = "Preprocessing data ...")
    startTime = time.time()
    df['cleanedResume'] = df.Resume.apply(lambda x: performStemming(x))
    resumeText = df['cleanedResume'].values
    progressBar.progress(20, text = "Extracting features ...")
    vectorizer = loadTfidfVectorizer()
    wordFeatures = vectorizer.transform(resumeText)
    wordFeaturesWithZeros = addZeroFeatures(wordFeatures)
    progressBar.progress(40, text = "Reducing dimensionality ...")
    finalFeatures = dimensionalityReduction(wordFeaturesWithZeros)
    progressBar.progress(60, text = "Predicting categories ...")
    knn = loadKnnModel()
    predictedCategories = knn.predict(finalFeatures)
    progressBar.progress(80, text = "Finishing touches ...")
    le = loadLabelEncoder()
    df['Industry Category'] = le.inverse_transform(predictedCategories)
    df['Industry Category'] = pd.Categorical(df['Industry Category'])
    df.drop(columns = ['cleanedResume'], inplace = True)
    endTime = time.time()
    elapsedSeconds = endTime - startTime
    hours, remainder = divmod(int(elapsedSeconds), 3600)
    minutes, _ = divmod(remainder, 60)
    secondsWithDecimals = '{:.2f}'.format(elapsedSeconds % 60)
    elapsedTimeStr = f'{hours} h : {minutes} m : {secondsWithDecimals} s'
    progressBar.progress(100, text = f'Classification Complete!')
    time.sleep(1)
    progressBar.empty()
    st.info(f'Finished classifying {len(resumeText)} resumes - {elapsedTimeStr}')
    return df 

    # NO LOADING WIDGET
    # startTime = time.time()
    # df['cleanedResume'] = df.Resume.apply(lambda x: performStemming(x))
    # resumeText = df['cleanedResume'].values
    # vectorizer = loadTfidfVectorizer()
    # wordFeatures = vectorizer.transform(resumeText)
    # wordFeaturesWithZeros = addZeroFeatures(wordFeatures)
    # finalFeatures = dimensionalityReduction(wordFeaturesWithZeros)
    # knn = loadKnnModel()
    # predictedCategories = knn.predict(finalFeatures)
    # le = loadLabelEncoder()
    # df['Industry Category'] = le.inverse_transform(predictedCategories)
    # df['Industry Category'] = pd.Categorical(df['Industry Category'])
    # df.drop(columns = ['cleanedResume'], inplace = True)
    # endTime = time.time()
    # elapsedSeconds = endTime - startTime
    # elapsedTime = datetime.timedelta(seconds = elapsedSeconds)
    # hours, remainder = divmod(elapsedTime.seconds, 3600)
    # minutes, seconds = divmod(remainder, 60)
    # elapsedTimeStr = f"{hours} hr {minutes} min {seconds} sec"
    # st.info(f'Finished in {elapsedTimeStr}')
    # return df 

def clickClassify():
    st.session_state.processClf = True

def clickRank():
    st.session_state.processRank = True

def convertDfToXlsx(df):
    output = BytesIO()
    writer = pd.ExcelWriter(output, engine = 'xlsxwriter')
    df.to_excel(writer, index = False, sheet_name = 'Sheet1')
    workbook = writer.book
    worksheet = writer.sheets['Sheet1']
    format1 = workbook.add_format({'num_format': '0.00'}) 
    worksheet.set_column('A:A', None, format1)  
    writer.close()
    processedData = output.getvalue()
    return processedData

def createBarChart(df):
    valueCounts = df['Industry Category'].value_counts().reset_index()
    valueCounts.columns = ['Industry Category', 'Count']
    newDataframe = pd.DataFrame(valueCounts)
    barChart = alt.Chart(newDataframe,
    ).mark_bar(
        color = '#56B6C2',
        size = 13 
    ).encode(
        x = alt.X('Count:Q', axis = alt.Axis(format = 'd'), title = 'Number of Resumes'),
        y = alt.Y('Industry Category:N', title = 'Category'),
        tooltip = ['Industry Category', 'Count']
    ).properties(
        title = 'Number of Resumes per Category',
    )
    return barChart

def dimensionalityReduction(features):
    nca = joblib.load('nca_model.joblib')
    features = nca.transform(features.toarray())
    return features    

def filterDataframeClf(df: pd.DataFrame) -> pd.DataFrame:
    modify = st.toggle("Add filters", key = 'filter-clf-1')
    if not modify:
        return df
    df = df.copy()
    modificationContainer = st.container()
    with modificationContainer:
        toFilterColumns = st.multiselect("Filter table on", df.columns, key = 'filter-clf-2')
        for column in toFilterColumns:
            left, right = st.columns((1, 20))
            left.write("↳")
            widgetKey = f'filter-clf-{toFilterColumns.index(column)}-{column}'
            if is_categorical_dtype(df[column]):
                userCatInput = right.multiselect(
                    f'Values for {column}',
                    df[column].unique(),
                    default = list(df[column].unique()),
                    key = widgetKey 
                )
                df = df[df[column].isin(userCatInput)]
            elif is_numeric_dtype(df[column]):
                _min = float(df[column].min())
                _max = float(df[column].max())
                step = (_max - _min) / 100
                userNumInput = right.slider(
                    f'Values for {column}',
                    min_value = _min,
                    max_value = _max,
                    value = (_min, _max),
                    step = step,
                    key = widgetKey 
                )
                df = df[df[column].between(*userNumInput)]
            else:
                userTextInput = right.text_input(
                    f'Substring or regex in {column}',
                    key = widgetKey 
                )
                if userTextInput:
                    userTextInput = userTextInput.lower()
                    df = df[df[column].astype(str).str.lower().str.contains(userTextInput)]
    return df

def filterDataframeRnk(df: pd.DataFrame) -> pd.DataFrame:
    modify = st.toggle("Add filters", key = 'filter-rnk-1')
    if not modify:
        return df
    df = df.copy()
    modificationContainer = st.container()
    with modificationContainer:
        toFilterColumns = st.multiselect("Filter table on", df.columns, key = 'filter-rnk-2')
        for column in toFilterColumns:
            left, right = st.columns((1, 20))
            left.write("↳")
            widgetKey = f'filter-rnk-{toFilterColumns.index(column)}-{column}'
            if is_categorical_dtype(df[column]):
                userCatInput = right.multiselect(
                    f'Values for {column}',
                    df[column].unique(),
                    default = list(df[column].unique()),
                    key = widgetKey
                )
                df = df[df[column].isin(userCatInput)]
            elif is_numeric_dtype(df[column]):
                _min = float(df[column].min())
                _max = float(df[column].max())
                step = (_max - _min) / 100
                userNumInput = right.slider(
                    f'Values for {column}',
                    min_value = _min,
                    max_value = _max,
                    value = (_min, _max),
                    step = step,
                    key = widgetKey
                )
                df = df[df[column].between(*userNumInput)]
            else:
                userTextInput = right.text_input(
                    f'Substring or regex in {column}',
                    key = widgetKey
                )
                if userTextInput:
                    userTextInput = userTextInput.lower()
                    df = df[df[column].astype(str).str.lower().str.contains(userTextInput)]
    return df

def getWordnetPos(tag):
    if tag.startswith('J'):
        return wordnet.ADJ
    elif tag.startswith('V'):
        return wordnet.VERB
    elif tag.startswith('N'):
        return wordnet.NOUN
    elif tag.startswith('R'):
        return wordnet.ADV
    else:
        return wordnet.NOUN

def loadKnnModel():
    knnModelFileName = f'knn_model.joblib'
    return joblib.load(knnModelFileName)

def loadLabelEncoder():
    labelEncoderFileName = f'label_encoder.joblib'
    return joblib.load(labelEncoderFileName)

def loadTfidfVectorizer():
    tfidfVectorizerFileName = f'tfidf_vectorizer.joblib' 
    return joblib.load(tfidfVectorizerFileName)

def performLemmatization(text):
    text = re.sub('http\S+\s*', ' ', text)
    text = re.sub('RT|cc', ' ', text)
    text = re.sub('#\S+', '', text)
    text = re.sub('@\S+', '  ', text)
    text = re.sub('[%s]' % re.escape("""!"#$%&'()*+,-./:;<=>?@[\]^_`{|}~"""), ' ', text)
    text = re.sub(r'[^\x00-\x7f]',r' ', text)
    text = re.sub('\s+', ' ', text)
    words = word_tokenize(text)
    words = [
        lemmatizer.lemmatize(word.lower(), pos = getWordnetPos(pos)) 
        for word, pos in pos_tag(words) if word.lower() not in stop_words
    ]
    return words

def performStemming(text):
    text = re.sub('http\S+\s*', ' ', text)
    text = re.sub('RT|cc', ' ', text)
    text = re.sub('#\S+', '', text)
    text = re.sub('@\S+', '  ', text)
    text = re.sub('[%s]' % re.escape("""!"#$%&'()*+,-./:;<=>?@[\]^_`{|}~"""), ' ', text)
    text = re.sub(r'[^\x00-\x7f]',r' ', text)
    text = re.sub('\s+', ' ', text)
    words = word_tokenize(text)
    words = [stemmer.stem(word.lower()) for word in words if word.lower() not in stop_words]
    text = ' '.join(words)
    return text 

@st.cache_data
def loadModel():
    # model_path = '~/Projects/hau/csstudy/final-csstudy/wiki-news-300d-1M-subword.vec'
    model_path = 'wiki-news-300d-1M-subword.vec'
    model = KeyedVectors.load_word2vec_format(model_path, limit = 100000)
    return model

model = loadModel()

@st.cache_data(max_entries = 1, show_spinner = False)
def rankResumes(text, df):
    # WITH PROGRESS BAR
    progressBar = st.progress(0)
    progressBar.progress(0, text = "Preprocessing data ...")
    startTime = time.time()
    jobDescriptionText = performLemmatization(text)
    df['cleanedResume'] = df['Resume'].apply(lambda x: performLemmatization(x))
    documents = [jobDescriptionText] + df['cleanedResume'].tolist()
    progressBar.progress(13, text = "Creating a dictionary ...")
    dictionary = Dictionary(documents)
    progressBar.progress(25, text = "Creating a TF-IDF model ...")
    tfidf = TfidfModel(dictionary = dictionary)
    progressBar.progress(38, text = "Creating a Similarity Index...")
    similarityIndex = WordEmbeddingSimilarityIndex(model)
    progressBar.progress(50, text = "Creating a Similarity Matrix...")
    similarityMatrix = SparseTermSimilarityMatrix(similarityIndex, dictionary, tfidf)
    progressBar.progress(63, text = "Setting up job description as the query ...")
    query = tfidf[dictionary.doc2bow(jobDescriptionText)]
    progressBar.progress(75, text = "Calculating semantic similarities ...")
    index = SoftCosineSimilarity(
        tfidf[[dictionary.doc2bow(resume) for resume in df['cleanedResume']]],
        similarityMatrix 
    )
    similarities = index[query]
    progressBar.progress(88, text = "Finishing touches ...")
    df['Similarity Score'] = similarities
    df['Rank'] = df['Similarity Score'].rank(ascending=False, method='dense').astype(int)
    df.sort_values(by='Rank', inplace=True)
    df.drop(columns = ['cleanedResume'], inplace = True)
    endTime = time.time()
    elapsedSeconds = endTime - startTime
    hours, remainder = divmod(int(elapsedSeconds), 3600)
    minutes, _ = divmod(remainder, 60)
    secondsWithDecimals = '{:.2f}'.format(elapsedSeconds % 60)
    elapsedTimeStr = f'{hours} h : {minutes} m : {secondsWithDecimals} s'
    progressBar.progress(100, text = f'Classification Complete!')
    time.sleep(1)
    progressBar.empty()
    st.info(f'Finished ranking {len(df)} resumes - {elapsedTimeStr}')
    return df 
    
    # NO LOADING WIDGET
    # startTime = time.time()
    # jobDescriptionText = performLemmatization(text)
    # df['cleanedResume'] = df['Resume'].apply(lambda x: performLemmatization(x))
    # documents = [jobDescriptionText] + df['cleanedResume'].tolist()
    # dictionary = Dictionary(documents)
    # tfidf = TfidfModel(dictionary = dictionary)
    # similarityIndex = WordEmbeddingSimilarityIndex(model)
    # similarityMatrix = SparseTermSimilarityMatrix(similarityIndex, dictionary, tfidf)
    # query = tfidf[dictionary.doc2bow(jobDescriptionText)]
    # index = SoftCosineSimilarity(
    #     tfidf[[dictionary.doc2bow(resume) for resume in df['cleanedResume']]],
    #     similarityMatrix 
    # )
    # similarities = index[query]
    # df['Similarity Score'] = similarities
    # df.sort_values(by = 'Similarity Score', ascending = False, inplace = True)
    # df.drop(columns = ['cleanedResume'], inplace = True)
    # endTime = time.time()
    # elapsedSeconds = endTime - startTime
    # elapsedTime = datetime.timedelta(seconds = elapsedSeconds)
    # hours, remainder = divmod(elapsedTime.seconds, 3600)
    # minutes, seconds = divmod(remainder, 60)
    # elapsedTimeStr = f"{hours} hr {minutes} min {seconds} sec"
    # st.info(f'Finished in {elapsedTimeStr}')
    # return df 

# TF-IDF + LSA + COSSIM
# from sklearn.decomposition import TruncatedSVD
# import math
# def resumesRank(jobDescriptionRnk, resumeRnk):
#     jobDescriptionRnk = preprocessing(jobDescriptionRnk)
#     resumeRnk['cleanedResume'] = resumeRnk.Resume.apply(lambda x: preprocessing(x))
#     resumes = resumeRnk['cleanedResume'].values
#     # tfidfVectorizer = TfidfVectorizer(sublinear_tf = True, stop_words = 'english')
#     # tfidfVectorizer = TfidfVectorizer(sublinear_tf = True)
#     # tfidfVectorizer = TfidfVectorizer(stop_words = 'english')
#     tfidfVectorizer = TfidfVectorizer()
#     tfidfMatrix = tfidfVectorizer.fit_transform([jobDescriptionRnk] + list(resumes))
#     num_features = len(tfidfVectorizer.get_feature_names_out())
#     st.write(f"Number of TF-IDF Features: {num_features}")
#     nComponents = math.ceil(len(resumes) * 0.55)
#     # nComponents = math.ceil(num_features * 0.01)
#     # nComponents = 5 
#     st.write(nComponents)
#     # nComponents = len(resumes)
#     lsa = TruncatedSVD(n_components=nComponents)
#     lsaMatrix = lsa.fit_transform(tfidfMatrix)
#     similarityScores = cosine_similarity(lsaMatrix[0:1], lsaMatrix[1:])
#     resumeRnk['Similarity Score (%)'] = similarityScores[0] * 100
#     resumeRnk = resumeRnk.sort_values(by='Similarity Score (%)', ascending=False)
#     del resumeRnk['cleanedResume']
#     return resumeRnk

# 1 BY 1 SOFT COSSIM
# def resumesRank(jobDescriptionRnk, resumeRnk):
#     jobDescriptionText = preprocessing2(jobDescriptionRnk)
#     resumeRnk['cleanedResume'] = resumeRnk['Resume'].apply(lambda x: preprocessing2(x))
#     similarityscore = []
#     for resume in resumeRnk['cleanedResume']:
#         documents = [jobDescriptionText, resume] 
#         dictionary = Dictionary(documents)
#         documentBow = [dictionary.doc2bow(doc) for doc in documents]
#         tfidf = TfidfModel(documentBow, dictionary=dictionary)
#         similarityIndex = WordEmbeddingSimilarityIndex(model)
#         similarityMatrix = SparseTermSimilarityMatrix(similarityIndex, dictionary, tfidf)
#         # similarityMatrix = SparseTermSimilarityMatrix(similarityIndex, dictionary)
#         value = tfidf[dictionary.doc2bow(resume)]
#         # value = dictionary.doc2bow(jobDescriptionText)
#         index = SoftCosineSimilarity(
#             # tfidf[[dictionary.doc2bow(resume)]], 
#             tfidf[[dictionary.doc2bow(jobDescriptionText)]], 
#             # [dictionary.doc2bow(resume) for resume in resumeRnk['cleanedResume']],
#             similarityMatrix, 
#         )
#         similarities = index[value]
#         similarityscore.append(similarities)
#     print(similarityscore)
#     resumeRnk['Similarity Score'] = similarityscore 
#     resumeRnk.sort_values(by='Similarity Score', ascending=False, inplace=True)
#     resumeRnk.drop(columns=['cleanedResume'], inplace=True)
#     return resumeRnk
#
# TF-IDF SCORE + WORD EMBEDDINGS SCORE
# def resumesRank(jobDescriptionRnk, resumeRnk):
#     def get_word_embedding(text):
#         words = text.split()
#         valid_words = [word for word in text.split() if word in model]
#         if valid_words:
#             return np.mean([model[word] for word in valid_words], axis=0)
#         else:
#             return np.zeros(model.vector_size)
#     jobDescriptionRnk = preprocessing2(jobDescriptionRnk)
#     resumeRnk['cleanedResume'] = resumeRnk.Resume.apply(lambda x: preprocessing2(x))
#     tfidfVectorizer = TfidfVectorizer(sublinear_tf = True, stop_words='english')
#     jobTfidf = tfidfVectorizer.fit_transform([jobDescriptionRnk])
#     jobDescriptionEmbedding = get_word_embedding(jobDescriptionRnk)
#     resumeSimilarities = []
#     for resumeContent in resumeRnk['cleanedResume']:
#         resumeEmbedding = get_word_embedding(resumeContent)
#         similarityFastText = cosine_similarity([jobDescriptionEmbedding], [resumeEmbedding])[0][0]
#         similarityTFIDF = cosine_similarity(jobTfidf, tfidfVectorizer.transform([resumeContent]))[0][0]
#         similarity = (0.6 * similarityTFIDF) + (0.4 * similarityFastText)
#         final_similarity = similarity * 100
#         resumeSimilarities.append(final_similarity)
#     resumeRnk['Similarity Score (%)'] = resumeSimilarities
#     resumeRnk = resumeRnk.sort_values(by='Similarity Score (%)', ascending=False)
#     del resumeRnk['cleanedResume']
#     return resumeRnk

# WORD EMBEDDINGS + COSSIM
# def resumesRank(jobDescriptionRnk, resumeRnk):
#     def get_word_embedding(text):
#         words = text.split()
#         valid_words = [word for word in text.split() if word in model]
#         if valid_words:
#             return np.mean([model[word] for word in valid_words], axis=0)
#         else:
#             return np.zeros(model.vector_size)
#     jobDescriptionRnk = preprocessing2(jobDescriptionRnk)
#     jobDescriptionEmbedding = get_word_embedding(jobDescriptionRnk)
#     resumeRnk['cleanedResume'] = resumeRnk.Resume.apply(lambda x: preprocessing2(x))
#     resumeSimilarities = []
#     for resumeContent in resumeRnk['cleanedResume']:
#         resumeEmbedding = get_word_embedding(resumeContent)
#         similarity = cosine_similarity([jobDescriptionEmbedding], [resumeEmbedding])[0][0]
#         percentageSimilarity = similarity * 100
#         resumeSimilarities.append(percentageSimilarity)
#     resumeRnk['Similarity Score (%)'] = resumeSimilarities
#     resumeRnk = resumeRnk.sort_values(by='Similarity Score (%)', ascending=False)
#     del resumeRnk['cleanedResume']
#     return resumeRnk

# TF-IDF + COSSIM
# def resumesRank(jobDescriptionRnk, resumeRnk):
#     jobDescriptionRnk = preprocessing2(jobDescriptionRnk)
#     resumeRnk['cleanedResume'] = resumeRnk.Resume.apply(lambda x: preprocessing2(x))
#     tfidfVectorizer = TfidfVectorizer(sublinear_tf = True, stop_words='english')
#     jobTfidf = tfidfVectorizer.fit_transform([jobDescriptionRnk])
#     resumeSimilarities = []
#     for resumeContent in resumeRnk['cleanedResume']:
#         resumeTfidf = tfidfVectorizer.transform([resumeContent])
#         similarity = cosine_similarity(jobTfidf, resumeTfidf)
#         percentageSimilarity = (similarity[0][0] * 100)
#         resumeSimilarities.append(percentageSimilarity)
#     resumeRnk['Similarity Score (%)'] = resumeSimilarities
#     resumeRnk = resumeRnk.sort_values(by='Similarity Score (%)', ascending=False)
#     del resumeRnk['cleanedResume']
#     return resumeRnk

def writeGettingStarted():
    st.write("""
    ## Hello, Welcome!  
    In today's competitive job market, the process of manually screening resumes has become a daunting task for recruiters and hiring managers. 
    The sheer volume of applications received for a single job posting can make it extremely time-consuming to identify the most suitable candidates efficiently. 
    This often leads to missed opportunities and the potential loss of top-tier talent.

    The ***Resume Screening & Classification*** website application aims to help alleviate the challenges posed by manual resume screening. 
    The main objectives are:
    - To classify the resumes into their most suitable job industry category
    - To compare the resumes to the job description and rank them by similarity
    """)
    st.divider()
    st.write("""
    ## Input Guide 
    #### For the Job Description: 
    Ensure the job description is saved in a text (.txt) file. 
    Kindly outline the responsibilities, qualifications, and skills associated with the position.

    #### For the Resumes: 
    Resumes must be compiled in an excel (.xlsx) file. 
    The organization of columns is up to you but ensure that the "Resume" column is present.
    The values under this column should include all the relevant details for each resume.
    """)
    st.divider()
    st.write("""
    ## Demo Walkthrough
    #### Classify Tab:
    The web app will classify the resumes into their most suitable job industry category.
    Currently the Category Scope consists of the following:
    """)
    column1, column2 = st.columns(2)
    with column1:
        st.write("""
        - Aviation
        - Business development
        - Culinary
        - Education
        - Engineering
        - Finance
        """)
    with column2:
        st.write("""
        - Fitness
        - Healthcare
        - HR
        - Information Technology
        - Public relations
        """)
    with st.expander('Classification Steps'):
        st.write("""
        ##### Upload Resumes & Start Processing:
        - Navigate to the "Classify" tab.
        - Upload the Excel file (.xlsx) containing the resumes you want to classify. Ensure that your Excel file has the "Resume" column containing the resume texts.
        - Click the "Start Processing" button.
        - The app will analyze the resumes and categorize them into job industry categories.
        ######
        """)
        imgClf1 = Image.open('clf-1.png')
        st.image(imgClf1, use_column_width = True, output_format = "PNG")
        st.write("""
        ##### View Bar Chart:
        - A bar chart will appear, showing the number of resumes per category, helping you visualize the distribution.
        ######
        """)
        imgClf2 = Image.open('clf-2.png')
        st.image(imgClf2, use_column_width = True, output_format = "PNG")
        st.write("""
        ##### Add Filters:
        - You can apply filters to the dataframe to narrow down your results.
        ######
        """)
        imgClf3 = Image.open('clf-3.png')
        st.image(imgClf3, use_column_width = True, output_format = "PNG")
        st.write("""
        ##### Donwload Results:
        - Once you've applied filters or are satisfied with the results, you can download the current dataframe as an Excel file by clicking the "Save Current Output as XLSX" button.
        ####
        """)
        imgClf4 = Image.open('clf-4.png')
        st.image(imgClf4, use_column_width = True, output_format = "PNG")
    st.write("""
    #### Rank Tab:
    The web app will rank the resumes based on their semantic similarity to the job description. 
    The similarity score ranges from -1 to 1.
    A score of 1 is achieved when Document A and Document B are identical.

    ##### **Kindly take note:**

    It's important to note that these scores are not absolute and may change when more resumes are added in the comparison.
    The ranking algorithm dynamically adjusts its results based on the entire set of uploaded resumes.
    We recommend considering the scores as a relative measure rather than an absolute determination.
    """)
    with st.expander('Ranking Steps'):
        st.write("""
        ##### Upload Files & Start Processing:
        - Navigate to the "Rank" tab.
        - Upload the job description as a text file. This file should contain the description of the job you want to compare resumes against.
        - Upload the Excel file that contains the resumes you want to rank.
        - Click the "Start Processing" button.
        - The app will analyze the job description and rank the resumes based on their semantic similarity to the job description.
        ######
        """)
        imgRnk1 = Image.open('rnk-1.png')
        st.image(imgRnk1, use_column_width = True, output_format = "PNG")
        st.write("""
        ##### View Job Description:
        - The output will display the contents of the job description for reference.
        ######
        """)
        imgRnk2 = Image.open('rnk-2.png')
        st.image(imgRnk2, use_column_width = True, output_format = "PNG")
        st.write("""
        ##### Add Filters:
        - You can apply filters to the dataframe to narrow down your results.
        ######
        """)
        imgRnk3 = Image.open('rnk-3.png')
        st.image(imgRnk3, use_column_width = True, output_format = "PNG")
        st.write("""
        ##### Donwload Results:
        - Once you've applied filters or are satisfied with the results, you can download the current dataframe as an Excel file by clicking the "Save Current Output as XLSX" button.
        ####
        """)
        imgRnk4 = Image.open('rnk-4.png')
        st.image(imgRnk4, use_column_width = True, output_format = "PNG")