File size: 26,658 Bytes
7877864 0d28eff 7877864 2a5c611 7877864 0d28eff 7877864 0d28eff fc797e5 0d28eff 7877864 0d28eff 7877864 0d28eff 7877864 263ccb8 7877864 263ccb8 7877864 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 |
import altair as alt
# import datetime
import joblib
import nltk
import numpy as np
import pandas as pd
import re
import streamlit as st
import time
from gensim.corpora import Dictionary
from gensim.models import KeyedVectors, TfidfModel
from gensim.similarities import SoftCosineSimilarity, SparseTermSimilarityMatrix, WordEmbeddingSimilarityIndex
from gensim.similarities.annoy import AnnoyIndexer
from io import BytesIO
from nltk import pos_tag, word_tokenize
from nltk.corpus import stopwords, wordnet
from nltk.stem import PorterStemmer, WordNetLemmatizer
from pandas.api.types import is_categorical_dtype, is_numeric_dtype
from PIL import Image
from scipy.sparse import csr_matrix, hstack
nltk.download('averaged_perceptron_tagger')
nltk.download('punkt')
nltk.download('stopwords')
nltk.download('wordnet')
stop_words = set(stopwords.words('english'))
lemmatizer = WordNetLemmatizer()
stemmer = PorterStemmer()
def addZeroFeatures(matrix):
maxFeatures = 18038
numDocs, numTerms = matrix.shape
missingFeatures = maxFeatures - numTerms
if missingFeatures > 0:
zeroFeatures = csr_matrix((numDocs, missingFeatures), dtype=np.float64)
matrix = hstack([matrix, zeroFeatures])
return matrix
@st.cache_data(max_entries = 1, show_spinner = False)
def classifyResumes(df):
# WITH PROGRESS BAR
progressBar = st.progress(0)
progressBar.progress(0, text = "Preprocessing data ...")
startTime = time.time()
df['cleanedResume'] = df.Resume.apply(lambda x: performStemming(x))
resumeText = df['cleanedResume'].values
progressBar.progress(20, text = "Extracting features ...")
vectorizer = loadTfidfVectorizer()
wordFeatures = vectorizer.transform(resumeText)
wordFeaturesWithZeros = addZeroFeatures(wordFeatures)
progressBar.progress(40, text = "Reducing dimensionality ...")
finalFeatures = dimensionalityReduction(wordFeaturesWithZeros)
progressBar.progress(60, text = "Predicting categories ...")
knn = loadKnnModel()
predictedCategories = knn.predict(finalFeatures)
progressBar.progress(80, text = "Finishing touches ...")
le = loadLabelEncoder()
df['Industry Category'] = le.inverse_transform(predictedCategories)
df['Industry Category'] = pd.Categorical(df['Industry Category'])
df.drop(columns = ['cleanedResume'], inplace = True)
endTime = time.time()
elapsedSeconds = endTime - startTime
hours, remainder = divmod(int(elapsedSeconds), 3600)
minutes, _ = divmod(remainder, 60)
secondsWithDecimals = '{:.2f}'.format(elapsedSeconds % 60)
elapsedTimeStr = f'{hours} h : {minutes} m : {secondsWithDecimals} s'
progressBar.progress(100, text = f'Classification Complete!')
time.sleep(1)
progressBar.empty()
st.info(f'Finished classifying {len(resumeText)} resumes - {elapsedTimeStr}')
return df
# NO LOADING WIDGET
# startTime = time.time()
# df['cleanedResume'] = df.Resume.apply(lambda x: performStemming(x))
# resumeText = df['cleanedResume'].values
# vectorizer = loadTfidfVectorizer()
# wordFeatures = vectorizer.transform(resumeText)
# wordFeaturesWithZeros = addZeroFeatures(wordFeatures)
# finalFeatures = dimensionalityReduction(wordFeaturesWithZeros)
# knn = loadKnnModel()
# predictedCategories = knn.predict(finalFeatures)
# le = loadLabelEncoder()
# df['Industry Category'] = le.inverse_transform(predictedCategories)
# df['Industry Category'] = pd.Categorical(df['Industry Category'])
# df.drop(columns = ['cleanedResume'], inplace = True)
# endTime = time.time()
# elapsedSeconds = endTime - startTime
# elapsedTime = datetime.timedelta(seconds = elapsedSeconds)
# hours, remainder = divmod(elapsedTime.seconds, 3600)
# minutes, seconds = divmod(remainder, 60)
# elapsedTimeStr = f"{hours} hr {minutes} min {seconds} sec"
# st.info(f'Finished in {elapsedTimeStr}')
# return df
def clickClassify():
st.session_state.processClf = True
def clickRank():
st.session_state.processRank = True
def convertDfToXlsx(df):
output = BytesIO()
writer = pd.ExcelWriter(output, engine = 'xlsxwriter')
df.to_excel(writer, index = False, sheet_name = 'Sheet1')
workbook = writer.book
worksheet = writer.sheets['Sheet1']
format1 = workbook.add_format({'num_format': '0.00'})
worksheet.set_column('A:A', None, format1)
writer.close()
processedData = output.getvalue()
return processedData
def createBarChart(df):
valueCounts = df['Industry Category'].value_counts().reset_index()
valueCounts.columns = ['Industry Category', 'Count']
newDataframe = pd.DataFrame(valueCounts)
barChart = alt.Chart(newDataframe,
).mark_bar(
color = '#56B6C2',
size = 13
).encode(
x = alt.X('Count:Q', axis = alt.Axis(format = 'd'), title = 'Number of Resumes'),
y = alt.Y('Industry Category:N', title = 'Category'),
tooltip = ['Industry Category', 'Count']
).properties(
title = 'Number of Resumes per Category',
)
return barChart
def dimensionalityReduction(features):
nca = joblib.load('nca_model.joblib')
features = nca.transform(features.toarray())
return features
def filterDataframeClf(df: pd.DataFrame) -> pd.DataFrame:
modify = st.toggle("Add filters", key = 'filter-clf-1')
if not modify:
return df
df = df.copy()
modificationContainer = st.container()
with modificationContainer:
toFilterColumns = st.multiselect("Filter table on", df.columns, key = 'filter-clf-2')
for column in toFilterColumns:
left, right = st.columns((1, 20))
left.write("↳")
widgetKey = f'filter-clf-{toFilterColumns.index(column)}-{column}'
if is_categorical_dtype(df[column]):
userCatInput = right.multiselect(
f'Values for {column}',
df[column].unique(),
default = list(df[column].unique()),
key = widgetKey
)
df = df[df[column].isin(userCatInput)]
elif is_numeric_dtype(df[column]):
_min = float(df[column].min())
_max = float(df[column].max())
step = (_max - _min) / 100
userNumInput = right.slider(
f'Values for {column}',
min_value = _min,
max_value = _max,
value = (_min, _max),
step = step,
key = widgetKey
)
df = df[df[column].between(*userNumInput)]
else:
userTextInput = right.text_input(
f'Substring or regex in {column}',
key = widgetKey
)
if userTextInput:
userTextInput = userTextInput.lower()
df = df[df[column].astype(str).str.lower().str.contains(userTextInput)]
return df
def filterDataframeRnk(df: pd.DataFrame) -> pd.DataFrame:
modify = st.toggle("Add filters", key = 'filter-rnk-1')
if not modify:
return df
df = df.copy()
modificationContainer = st.container()
with modificationContainer:
toFilterColumns = st.multiselect("Filter table on", df.columns, key = 'filter-rnk-2')
for column in toFilterColumns:
left, right = st.columns((1, 20))
left.write("↳")
widgetKey = f'filter-rnk-{toFilterColumns.index(column)}-{column}'
if is_categorical_dtype(df[column]):
userCatInput = right.multiselect(
f'Values for {column}',
df[column].unique(),
default = list(df[column].unique()),
key = widgetKey
)
df = df[df[column].isin(userCatInput)]
elif is_numeric_dtype(df[column]):
_min = float(df[column].min())
_max = float(df[column].max())
step = (_max - _min) / 100
userNumInput = right.slider(
f'Values for {column}',
min_value = _min,
max_value = _max,
value = (_min, _max),
step = step,
key = widgetKey
)
df = df[df[column].between(*userNumInput)]
else:
userTextInput = right.text_input(
f'Substring or regex in {column}',
key = widgetKey
)
if userTextInput:
userTextInput = userTextInput.lower()
df = df[df[column].astype(str).str.lower().str.contains(userTextInput)]
return df
def getWordnetPos(tag):
if tag.startswith('J'):
return wordnet.ADJ
elif tag.startswith('V'):
return wordnet.VERB
elif tag.startswith('N'):
return wordnet.NOUN
elif tag.startswith('R'):
return wordnet.ADV
else:
return wordnet.NOUN
def loadKnnModel():
knnModelFileName = f'knn_model.joblib'
return joblib.load(knnModelFileName)
def loadLabelEncoder():
labelEncoderFileName = f'label_encoder.joblib'
return joblib.load(labelEncoderFileName)
def loadTfidfVectorizer():
tfidfVectorizerFileName = f'tfidf_vectorizer.joblib'
return joblib.load(tfidfVectorizerFileName)
def performLemmatization(text):
text = re.sub('http\S+\s*', ' ', text)
text = re.sub('RT|cc', ' ', text)
text = re.sub('#\S+', '', text)
text = re.sub('@\S+', ' ', text)
text = re.sub('[%s]' % re.escape("""!"#$%&'()*+,-./:;<=>?@[\]^_`{|}~"""), ' ', text)
text = re.sub(r'[^\x00-\x7f]',r' ', text)
text = re.sub('\s+', ' ', text)
words = word_tokenize(text)
words = [
lemmatizer.lemmatize(word.lower(), pos = getWordnetPos(pos))
for word, pos in pos_tag(words) if word.lower() not in stop_words
]
return words
def performStemming(text):
text = re.sub('http\S+\s*', ' ', text)
text = re.sub('RT|cc', ' ', text)
text = re.sub('#\S+', '', text)
text = re.sub('@\S+', ' ', text)
text = re.sub('[%s]' % re.escape("""!"#$%&'()*+,-./:;<=>?@[\]^_`{|}~"""), ' ', text)
text = re.sub(r'[^\x00-\x7f]',r' ', text)
text = re.sub('\s+', ' ', text)
words = word_tokenize(text)
words = [stemmer.stem(word.lower()) for word in words if word.lower() not in stop_words]
text = ' '.join(words)
return text
@st.cache_data
def loadModel():
model_path = 'wiki-news-300d-1M-subword.vec'
model = KeyedVectors.load_word2vec_format(model_path)
return model
model = loadModel()
@st.cache_data(max_entries = 1, show_spinner = False)
def rankResumes(text, df):
# WITH PROGRESS BAR
progressBar = st.progress(0)
progressBar.progress(0, text = "Preprocessing data ...")
startTime = time.time()
jobDescriptionText = performLemmatization(text)
df['cleanedResume'] = df['Resume'].apply(lambda x: performLemmatization(x))
documents = [jobDescriptionText] + df['cleanedResume'].tolist()
progressBar.progress(13, text = "Creating a dictionary ...")
dictionary = Dictionary(documents)
progressBar.progress(25, text = "Creating a TF-IDF model ...")
tfidf = TfidfModel(dictionary = dictionary)
progressBar.progress(38, text = "Creating a Similarity Index...")
words = [word for word, count in dictionary.most_common()]
wordVectors = model.vectors_for_all(words, allow_inference = False)
indexer = AnnoyIndexer(wordVectors, num_trees = 300)
similarityIndex = WordEmbeddingSimilarityIndex(wordVectors, kwargs = {'indexer': indexer})
progressBar.progress(50, text = "Creating a Similarity Matrix...")
similarityMatrix = SparseTermSimilarityMatrix(similarityIndex, dictionary, tfidf)
progressBar.progress(63, text = "Setting up job description as the query ...")
query = tfidf[dictionary.doc2bow(jobDescriptionText)]
progressBar.progress(75, text = "Calculating semantic similarities ...")
index = SoftCosineSimilarity(
tfidf[[dictionary.doc2bow(resume) for resume in df['cleanedResume']]],
similarityMatrix
)
similarities = index[query]
progressBar.progress(88, text = "Finishing touches ...")
df['Similarity Score (-1 to 1)'] = similarities
df['Rank'] = df['Similarity Score (-1 to 1)'].rank(ascending=False, method='dense').astype(int)
df.sort_values(by='Rank', inplace=True)
df.drop(columns = ['cleanedResume'], inplace = True)
endTime = time.time()
elapsedSeconds = endTime - startTime
hours, remainder = divmod(int(elapsedSeconds), 3600)
minutes, _ = divmod(remainder, 60)
secondsWithDecimals = '{:.2f}'.format(elapsedSeconds % 60)
elapsedTimeStr = f'{hours} h : {minutes} m : {secondsWithDecimals} s'
progressBar.progress(100, text = f'Ranking Complete!')
time.sleep(1)
progressBar.empty()
st.info(f'Finished ranking {len(df)} resumes - {elapsedTimeStr}')
return df
# NO LOADING WIDGET
# startTime = time.time()
# jobDescriptionText = performLemmatization(text)
# df['cleanedResume'] = df['Resume'].apply(lambda x: performLemmatization(x))
# documents = [jobDescriptionText] + df['cleanedResume'].tolist()
# dictionary = Dictionary(documents)
# tfidf = TfidfModel(dictionary = dictionary)
# similarityIndex = WordEmbeddingSimilarityIndex(model)
# similarityMatrix = SparseTermSimilarityMatrix(similarityIndex, dictionary, tfidf)
# query = tfidf[dictionary.doc2bow(jobDescriptionText)]
# index = SoftCosineSimilarity(
# tfidf[[dictionary.doc2bow(resume) for resume in df['cleanedResume']]],
# similarityMatrix
# )
# similarities = index[query]
# df['Similarity Score'] = similarities
# df.sort_values(by = 'Similarity Score', ascending = False, inplace = True)
# df.drop(columns = ['cleanedResume'], inplace = True)
# endTime = time.time()
# elapsedSeconds = endTime - startTime
# elapsedTime = datetime.timedelta(seconds = elapsedSeconds)
# hours, remainder = divmod(elapsedTime.seconds, 3600)
# minutes, seconds = divmod(remainder, 60)
# elapsedTimeStr = f"{hours} hr {minutes} min {seconds} sec"
# st.info(f'Finished in {elapsedTimeStr}')
# return df
# TF-IDF + LSA + COSSIM
# from sklearn.decomposition import TruncatedSVD
# import math
# def resumesRank(jobDescriptionRnk, resumeRnk):
# jobDescriptionRnk = preprocessing(jobDescriptionRnk)
# resumeRnk['cleanedResume'] = resumeRnk.Resume.apply(lambda x: preprocessing(x))
# resumes = resumeRnk['cleanedResume'].values
# # tfidfVectorizer = TfidfVectorizer(sublinear_tf = True, stop_words = 'english')
# # tfidfVectorizer = TfidfVectorizer(sublinear_tf = True)
# # tfidfVectorizer = TfidfVectorizer(stop_words = 'english')
# tfidfVectorizer = TfidfVectorizer()
# tfidfMatrix = tfidfVectorizer.fit_transform([jobDescriptionRnk] + list(resumes))
# num_features = len(tfidfVectorizer.get_feature_names_out())
# st.write(f"Number of TF-IDF Features: {num_features}")
# nComponents = math.ceil(len(resumes) * 0.55)
# # nComponents = math.ceil(num_features * 0.01)
# # nComponents = 5
# st.write(nComponents)
# # nComponents = len(resumes)
# lsa = TruncatedSVD(n_components=nComponents)
# lsaMatrix = lsa.fit_transform(tfidfMatrix)
# similarityScores = cosine_similarity(lsaMatrix[0:1], lsaMatrix[1:])
# resumeRnk['Similarity Score (%)'] = similarityScores[0] * 100
# resumeRnk = resumeRnk.sort_values(by='Similarity Score (%)', ascending=False)
# del resumeRnk['cleanedResume']
# return resumeRnk
# 1 BY 1 SOFT COSSIM
# def resumesRank(jobDescriptionRnk, resumeRnk):
# jobDescriptionText = preprocessing2(jobDescriptionRnk)
# resumeRnk['cleanedResume'] = resumeRnk['Resume'].apply(lambda x: preprocessing2(x))
# similarityscore = []
# for resume in resumeRnk['cleanedResume']:
# documents = [jobDescriptionText, resume]
# dictionary = Dictionary(documents)
# documentBow = [dictionary.doc2bow(doc) for doc in documents]
# tfidf = TfidfModel(documentBow, dictionary=dictionary)
# similarityIndex = WordEmbeddingSimilarityIndex(model)
# similarityMatrix = SparseTermSimilarityMatrix(similarityIndex, dictionary, tfidf)
# # similarityMatrix = SparseTermSimilarityMatrix(similarityIndex, dictionary)
# value = tfidf[dictionary.doc2bow(resume)]
# # value = dictionary.doc2bow(jobDescriptionText)
# index = SoftCosineSimilarity(
# # tfidf[[dictionary.doc2bow(resume)]],
# tfidf[[dictionary.doc2bow(jobDescriptionText)]],
# # [dictionary.doc2bow(resume) for resume in resumeRnk['cleanedResume']],
# similarityMatrix,
# )
# similarities = index[value]
# similarityscore.append(similarities)
# print(similarityscore)
# resumeRnk['Similarity Score'] = similarityscore
# resumeRnk.sort_values(by='Similarity Score', ascending=False, inplace=True)
# resumeRnk.drop(columns=['cleanedResume'], inplace=True)
# return resumeRnk
#
# TF-IDF SCORE + WORD EMBEDDINGS SCORE
# def resumesRank(jobDescriptionRnk, resumeRnk):
# def get_word_embedding(text):
# words = text.split()
# valid_words = [word for word in text.split() if word in model]
# if valid_words:
# return np.mean([model[word] for word in valid_words], axis=0)
# else:
# return np.zeros(model.vector_size)
# jobDescriptionRnk = preprocessing2(jobDescriptionRnk)
# resumeRnk['cleanedResume'] = resumeRnk.Resume.apply(lambda x: preprocessing2(x))
# tfidfVectorizer = TfidfVectorizer(sublinear_tf = True, stop_words='english')
# jobTfidf = tfidfVectorizer.fit_transform([jobDescriptionRnk])
# jobDescriptionEmbedding = get_word_embedding(jobDescriptionRnk)
# resumeSimilarities = []
# for resumeContent in resumeRnk['cleanedResume']:
# resumeEmbedding = get_word_embedding(resumeContent)
# similarityFastText = cosine_similarity([jobDescriptionEmbedding], [resumeEmbedding])[0][0]
# similarityTFIDF = cosine_similarity(jobTfidf, tfidfVectorizer.transform([resumeContent]))[0][0]
# similarity = (0.6 * similarityTFIDF) + (0.4 * similarityFastText)
# final_similarity = similarity * 100
# resumeSimilarities.append(final_similarity)
# resumeRnk['Similarity Score (%)'] = resumeSimilarities
# resumeRnk = resumeRnk.sort_values(by='Similarity Score (%)', ascending=False)
# del resumeRnk['cleanedResume']
# return resumeRnk
# WORD EMBEDDINGS + COSSIM
# def resumesRank(jobDescriptionRnk, resumeRnk):
# def get_word_embedding(text):
# words = text.split()
# valid_words = [word for word in text.split() if word in model]
# if valid_words:
# return np.mean([model[word] for word in valid_words], axis=0)
# else:
# return np.zeros(model.vector_size)
# jobDescriptionRnk = preprocessing2(jobDescriptionRnk)
# jobDescriptionEmbedding = get_word_embedding(jobDescriptionRnk)
# resumeRnk['cleanedResume'] = resumeRnk.Resume.apply(lambda x: preprocessing2(x))
# resumeSimilarities = []
# for resumeContent in resumeRnk['cleanedResume']:
# resumeEmbedding = get_word_embedding(resumeContent)
# similarity = cosine_similarity([jobDescriptionEmbedding], [resumeEmbedding])[0][0]
# percentageSimilarity = similarity * 100
# resumeSimilarities.append(percentageSimilarity)
# resumeRnk['Similarity Score (%)'] = resumeSimilarities
# resumeRnk = resumeRnk.sort_values(by='Similarity Score (%)', ascending=False)
# del resumeRnk['cleanedResume']
# return resumeRnk
# TF-IDF + COSSIM
# def resumesRank(jobDescriptionRnk, resumeRnk):
# jobDescriptionRnk = preprocessing2(jobDescriptionRnk)
# resumeRnk['cleanedResume'] = resumeRnk.Resume.apply(lambda x: preprocessing2(x))
# tfidfVectorizer = TfidfVectorizer(sublinear_tf = True, stop_words='english')
# jobTfidf = tfidfVectorizer.fit_transform([jobDescriptionRnk])
# resumeSimilarities = []
# for resumeContent in resumeRnk['cleanedResume']:
# resumeTfidf = tfidfVectorizer.transform([resumeContent])
# similarity = cosine_similarity(jobTfidf, resumeTfidf)
# percentageSimilarity = (similarity[0][0] * 100)
# resumeSimilarities.append(percentageSimilarity)
# resumeRnk['Similarity Score (%)'] = resumeSimilarities
# resumeRnk = resumeRnk.sort_values(by='Similarity Score (%)', ascending=False)
# del resumeRnk['cleanedResume']
# return resumeRnk
def writeGettingStarted():
st.write("""
## Hello, Welcome!
In today's competitive job market, the process of manually screening resumes has become a daunting task for recruiters and hiring managers.
The sheer volume of applications received for a single job posting can make it extremely time-consuming to identify the most suitable candidates efficiently.
This often leads to missed opportunities and the potential loss of top-tier talent.
The ***Resume Screening & Classification*** website application aims to help alleviate the challenges posed by manual resume screening.
The main objectives are:
- To classify the resumes into their most suitable job industry category
- To compare the resumes to the job description and rank them by similarity
""")
st.divider()
st.write("""
## Input Guide
#### For the Job Description:
Ensure the job description is saved in a text (.txt) file.
Kindly outline the responsibilities, qualifications, and skills associated with the position.
#### For the Resumes:
Resumes must be compiled in an excel (.xlsx) file.
The organization of columns is up to you but ensure that the "Resume" column is present.
The values under this column should include all the relevant details for each resume.
""")
st.divider()
st.write("""
## Demo Walkthrough
#### Classify Tab:
The web app will classify the resumes into their most suitable job industry category.
Currently the Category Scope consists of the following:
""")
column1, column2 = st.columns(2)
with column1:
st.write("""
- Aviation
- Business development
- Culinary
- Education
- Engineering
- Finance
""")
with column2:
st.write("""
- Fitness
- Healthcare
- HR
- Information Technology
- Public relations
""")
with st.expander('Classification Steps'):
st.write("""
##### Upload Resumes & Start Processing:
- Navigate to the "Classify" tab.
- Upload the Excel file (.xlsx) containing the resumes you want to classify. Ensure that your Excel file has the "Resume" column containing the resume texts.
- Click the "Start Processing" button.
- The app will analyze the resumes and categorize them into job industry categories.
######
""")
imgClf1 = Image.open('clf-1.png')
st.image(imgClf1, use_column_width = True, output_format = "PNG")
st.write("""
##### View Bar Chart:
- A bar chart will appear, showing the number of resumes per category, helping you visualize the distribution.
######
""")
imgClf2 = Image.open('clf-2.png')
st.image(imgClf2, use_column_width = True, output_format = "PNG")
st.write("""
##### Add Filters:
- You can apply filters to the dataframe to narrow down your results.
######
""")
imgClf3 = Image.open('clf-3.png')
st.image(imgClf3, use_column_width = True, output_format = "PNG")
st.write("""
##### Donwload Results:
- Once you've applied filters or are satisfied with the results, you can download the current dataframe as an Excel file by clicking the "Save Current Output as XLSX" button.
####
""")
imgClf4 = Image.open('clf-4.png')
st.image(imgClf4, use_column_width = True, output_format = "PNG")
st.write("""
#### Rank Tab:
The web app will rank the resumes based on their semantic similarity to the job description.
The similarity score ranges from -1 to 1.
A score of 1 is achieved when Document A and Document B are identical.
##### **Kindly take note:**
It's important to note that these scores are not absolute and may change when more resumes are added in the comparison.
The ranking algorithm dynamically adjusts its results based on the entire set of uploaded resumes.
We recommend considering the scores as a relative measure rather than an absolute determination.
""")
with st.expander('Ranking Steps'):
st.write("""
##### Upload Files & Start Processing:
- Navigate to the "Rank" tab.
- Upload the job description as a text file. This file should contain the description of the job you want to compare resumes against.
- Upload the Excel file that contains the resumes you want to rank.
- Click the "Start Processing" button.
- The app will analyze the job description and rank the resumes based on their semantic similarity to the job description.
######
""")
imgRnk1 = Image.open('rnk-1.png')
st.image(imgRnk1, use_column_width = True, output_format = "PNG")
st.write("""
##### View Job Description:
- The output will display the contents of the job description for reference.
######
""")
imgRnk2 = Image.open('rnk-2.png')
st.image(imgRnk2, use_column_width = True, output_format = "PNG")
st.write("""
##### Add Filters:
- You can apply filters to the dataframe to narrow down your results.
######
""")
imgRnk3 = Image.open('rnk-3.png')
st.image(imgRnk3, use_column_width = True, output_format = "PNG")
st.write("""
##### Donwload Results:
- Once you've applied filters or are satisfied with the results, you can download the current dataframe as an Excel file by clicking the "Save Current Output as XLSX" button.
####
""")
imgRnk4 = Image.open('rnk-4.png')
st.image(imgRnk4, use_column_width = True, output_format = "PNG")
|