|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
|
|
|
|
class LARS(torch.optim.Optimizer): |
|
""" |
|
LARS optimizer, no rate scaling or weight decay for parameters <= 1D. |
|
""" |
|
def __init__(self, params, lr=0, weight_decay=0, momentum=0.9, trust_coefficient=0.001): |
|
defaults = dict(lr=lr, weight_decay=weight_decay, momentum=momentum, trust_coefficient=trust_coefficient) |
|
super().__init__(params, defaults) |
|
|
|
@torch.no_grad() |
|
def step(self): |
|
for g in self.param_groups: |
|
for p in g['params']: |
|
dp = p.grad |
|
|
|
if dp is None: |
|
continue |
|
|
|
if p.ndim > 1: |
|
dp = dp.add(p, alpha=g['weight_decay']) |
|
param_norm = torch.norm(p) |
|
update_norm = torch.norm(dp) |
|
one = torch.ones_like(param_norm) |
|
q = torch.where(param_norm > 0., |
|
torch.where(update_norm > 0, |
|
(g['trust_coefficient'] * param_norm / update_norm), one), |
|
one) |
|
dp = dp.mul(q) |
|
|
|
param_state = self.state[p] |
|
if 'mu' not in param_state: |
|
param_state['mu'] = torch.zeros_like(p) |
|
mu = param_state['mu'] |
|
mu.mul_(g['momentum']).add_(dp) |
|
p.add_(mu, alpha=-g['lr']) |