File size: 6,324 Bytes
14fef9c
 
 
 
 
 
 
 
 
 
37e69f6
14fef9c
 
 
 
 
 
 
f91a2b3
 
14fef9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f91a2b3
37e69f6
f91a2b3
 
 
37e69f6
f91a2b3
 
 
 
37e69f6
f91a2b3
 
 
 
 
 
 
37e69f6
f91a2b3
 
 
37e69f6
 
 
 
 
 
 
 
 
 
 
 
 
 
f91a2b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37e69f6
f91a2b3
14fef9c
 
 
 
 
 
 
 
 
 
 
 
f91a2b3
 
 
 
 
 
 
 
14fef9c
37e69f6
32e3ac6
37e69f6
32e3ac6
 
14fef9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b63af2
14fef9c
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import os
import torch
import gradio as gr
import torchvision
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim

# This is just to show an interface where one draws a number and gets prediction. 

n_epochs = 10
batch_size_train = 128
batch_size_test = 1000
learning_rate = 0.01
momentum = 0.5
log_interval = 10
random_seed = 1
TRAIN_CUTOFF = 10
MODEL_PATH = 'weights' 
os.makedirs(MODEL_PATH,exist_ok=True)
METRIC_PATH = os.path.join(MODEL_PATH,'metrics.json')
MODEL_WEIGHTS_PATH = os.path.join(MODEL_PATH,'mnist_model.pth')
OPTIMIZER_PATH = os.path.join(MODEL_PATH,'optimizer.pth')
REPOSITORY_DIR = "data"
LOCAL_DIR = 'data_local'




HF_TOKEN = os.getenv("HF_TOKEN")
MODEL_REPO = 'mnist-adversarial-model'
HF_DATASET ="mnist-adversarial-dataset"
DATASET_REPO_URL = f"https://huggingface.co/datasets/chrisjay/{HF_DATASET}"
MODEL_REPO_URL = f"https://huggingface.co/model/chrisjay/{MODEL_REPO}"


torch.backends.cudnn.enabled = False
torch.manual_seed(random_seed)



TRAIN_TRANSFORM = torchvision.transforms.Compose([
                               torchvision.transforms.ToTensor(),
                               torchvision.transforms.Normalize(
                                 (0.1307,), (0.3081,))
                             ])



# Source: https://nextjournal.com/gkoehler/pytorch-mnist
class MNIST_Model(nn.Module):
    def __init__(self):
        super(MNIST_Model, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.conv2_drop = nn.Dropout2d()
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10)

    def forward(self, x):
        x = F.relu(F.max_pool2d(self.conv1(x), 2))
        x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
        x = x.view(-1, 320)
        x = F.relu(self.fc1(x))
        x = F.dropout(x, training=self.training)
        x = self.fc2(x)
        return F.log_softmax(x)

train_loader = torch.utils.data.DataLoader(
  torchvision.datasets.MNIST('files/', train=True, download=True,
                             transform=torchvision.transforms.Compose([
                               torchvision.transforms.ToTensor(),
                               torchvision.transforms.Normalize(
                                 mean=(0.1307,), std=(0.3081,))
                             ])),
  batch_size=batch_size_train, shuffle=True)

test_loader = torch.utils.data.DataLoader(
  torchvision.datasets.MNIST('files/', train=False, download=True,
                             transform=torchvision.transforms.Compose([
                               torchvision.transforms.ToTensor(),
                               torchvision.transforms.Normalize(
                                 (0.1307,), (0.3081,))
                             ])),
  batch_size=batch_size_test, shuffle=True)

def train(epoch,network,optimizer,train_loader):
    
    train_losses=[]
    network.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        optimizer.zero_grad()
        output = network(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % log_interval == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
            epoch, batch_idx * len(data), len(train_loader.dataset),
            100. * batch_idx / len(train_loader), loss.item()))
            train_losses.append(loss.item())
    
            torch.save(network.state_dict(), MODEL_WEIGHTS_PATH)
            torch.save(optimizer.state_dict(), OPTIMIZER_PATH)

def test():
    test_losses=[]
    network.eval()
    test_loss = 0
    correct = 0
    with torch.no_grad():
        for data, target in test_loader:
            output = network(data)
            test_loss += F.nll_loss(output, target, size_average=False).item()
            pred = output.data.max(1, keepdim=True)[1]
            correct += pred.eq(target.data.view_as(pred)).sum()
            test_loss /= len(test_loader.dataset)
        test_losses.append(test_loss)
        acc = 100. * correct / len(test_loader.dataset)
        acc = acc.item()
        test_metric = '〽Current test metric -> Avg. loss: `{:.4f}`, Accuracy: `{:.0f}%`\n'.format(
        test_loss,acc)
        print(test_metric)
        return test_metric,acc



random_seed = 1
torch.backends.cudnn.enabled = False
torch.manual_seed(random_seed)

network = MNIST_Model() #Initialize the model with random weights
optimizer = optim.SGD(network.parameters(), lr=learning_rate,
                      momentum=momentum)        


model_state_dict = MODEL_WEIGHTS_PATH
optimizer_state_dict = OPTIMIZER_PATH
if os.path.exists(model_state_dict) and os.path.exists(optimizer_state_dict):
    network_state_dict = torch.load(model_state_dict)
    network.load_state_dict(network_state_dict)

    optimizer_state_dict = torch.load(optimizer_state_dict)
    optimizer.load_state_dict(optimizer_state_dict)   
# Train

#for epoch in range(n_epochs):

#  train(epoch,network,optimizer,train_loader)
#  test()


def image_classifier(inp):
    """
    It takes an image as input and returns a dictionary of class labels and their corresponding
    confidence scores.
    
    :param inp: the image to be classified
    :return: A dictionary of the class index and the confidence value.
    """
    input_image = torchvision.transforms.ToTensor()(inp).unsqueeze(0)
    with torch.no_grad():

        prediction = torch.nn.functional.softmax(network(input_image)[0], dim=0)
        #pred_number = prediction.data.max(1, keepdim=True)[1]
        sorted_prediction = torch.sort(prediction,descending=True)
        confidences={}
        for s,v in zip(sorted_prediction.indices.numpy().tolist(),sorted_prediction.values.numpy().tolist()):
            confidences.update({s:v})
        return confidences




def main():
    block = gr.Blocks()

    with block:

        with gr.Row():     
    

            image_input =gr.inputs.Image(source="canvas",shape=(28,28),invert_colors=True,image_mode="L",type="pil")
            label_output = gr.outputs.Label(num_top_classes=10)
        
        image_input.change(image_classifier,inputs = [image_input],outputs=[label_output])
        


    block.launch()  
        
     


if __name__ == "__main__":
    main()