Spaces:
Runtime error
Runtime error
File size: 9,624 Bytes
afc4898 e9b6b65 afc4898 acb3b1d afc4898 acb3b1d afc4898 e9b6b65 acb3b1d afc4898 e9b6b65 afc4898 acb3b1d a619100 acb3b1d a619100 acb3b1d afc4898 39df437 47923e1 afc4898 acb3b1d afc4898 acb3b1d afc4898 39df437 47923e1 39df437 47923e1 39df437 41b0597 47923e1 afc4898 acb3b1d 1d713ee afc4898 acb3b1d afc4898 acb3b1d afc4898 acb3b1d 1d713ee acb3b1d afc4898 39df437 acb3b1d 7a69b9c acb3b1d afc4898 acb3b1d afc4898 acb3b1d afc4898 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
import re
from typing import Dict, List
from datasets import load_dataset
import pandas as pd
import plotly.figure_factory as ff
import plotly.graph_objects as go
import streamlit as st
from unidecode import unidecode
DATA_SPLITS = ["train", "validation", "test"]
def load_data() -> Dict[str, pd.DataFrame]:
return {
data: pd.read_csv(f"data/{data}.csv").rename(
{"label": "target"}, axis="columns"
)
for data in DATA_SPLITS
}
def flatten_list(main_list: List[List]) -> List:
return [item for sublist in main_list for item in sublist]
def count_num_of_characters(text: str) -> int:
return len(re.sub(r"[^a-zA-Z]", "", unidecode(text)))
def count_num_of_words(text: str) -> int:
return len(re.sub(r"[^a-zA-Z ]", "", unidecode(text)).split(" "))
selected_dataset = st.sidebar.selectbox(
"Choose a dataset to load",
("clarin-pl/polemo2-official", "laugustyniak/abusive-clauses-pl"),
)
def load_hf_dataset():
if selected_dataset == "clarin-pl/polemo2-official":
data = load_dataset("clarin-pl/polemo2-official")
DATA_DICT = {
"train": data["train"].to_pandas(),
"validation": data["validation"].to_pandas(),
"test": data["test"].to_pandas(),
}
DATA_DESCRIPTION = """The PolEmo2.0 is a dataset of online consumer reviews from four domains: medicine,
hotels, products, and university. It is human-annotated on a level of full reviews and individual
sentences. Current version (PolEmo 2.0) contains 8,216 reviews having 57,466 sentences. Each text and
sentence was manually annotated with sentiment in the 2+1 scheme, which gives a total of 197,
046 annotations. About 85% of the reviews are from the medicine and hotel domains. Each review is
annotated with four labels: positive, negative, neutral, or ambiguous. """
elif selected_dataset == "laugustyniak/abusive-clauses-pl":
DATA_DICT = load_data()
DATA_DESCRIPTION = """
''I have read and agree to the terms and conditions'' is one of the biggest lies on the Internet.
Consumers rarely read the contracts they are required to accept. We conclude agreements over the Internet daily.
But do we know the content of these agreements? Do we check potential unfair statements? On the Internet,
we probably skip most of the Terms and Conditions. However, we must remember that we have concluded many more
contracts. Imagine that we want to buy a house, a car, send our kids to the nursery, open a bank account,
or many more. In all these situations, you will need to conclude the contract, but there is a high probability
that you will not read the entire agreement with proper understanding. European consumer law aims to prevent
businesses from using so-called ''unfair contractual terms'' in their unilaterally drafted contracts,
requiring consumers to accept.
Our dataset treats ''unfair contractual term'' as the equivalent of an abusive clause. It could be defined as a
clause that is unilaterally imposed by one of the contract's parties, unequally affecting the other, or creating a
situation of imbalance between the duties and rights of the parties.
On the EU and at the national such as the Polish levels, agencies cannot check possible agreements by hand. Hence,
we took the first step to evaluate the possibility of accelerating this process. We created a dataset and machine
learning models to automate potentially abusive clauses detection partially. Consumer protection organizations and
agencies can use these resources to make their work more effective and efficient. Moreover, consumers can automatically
analyze contracts and understand what they agree upon.
"""
return DATA_DICT, DATA_DESCRIPTION
DATA_DICT, DATA_DESCRIPTION = load_hf_dataset()
header = st.container()
description = st.container()
dataframe_head = st.container()
word_searching = st.container()
dataset_statistics = st.container()
with header:
st.title(selected_dataset)
with description:
st.header("Dataset description")
st.write(DATA_DESCRIPTION)
with dataframe_head:
filtering_options = DATA_DICT["train"]["target"].unique().tolist()
filtering_options.append("All classes")
st.header("First 10 observations of a chosen class")
class_to_show = st.selectbox(
label="Select class to show", options=filtering_options
)
df_to_show = pd.concat(
[
DATA_DICT["train"].copy(),
DATA_DICT["validation"].copy(),
DATA_DICT["test"].copy(),
]
)
if class_to_show == "All classes":
df_to_show = df_to_show.head(10)
else:
df_to_show = df_to_show.loc[df_to_show["target"] == class_to_show].head(10)
st.dataframe(df_to_show)
st.text_area(label="Latex code", value=df_to_show.style.to_latex())
if selected_dataset == "clarin-pl/polemo2-official":
st.subheader("First 10 observations of a chosen domain and text type")
domain = st.selectbox(
label="Select domain",
options=["all", "hotels", "medicine", "products", "reviews"],
)
text_type = st.selectbox(
label="Select text type", options=["Full text", "Tokenized to sentences"]
)
text_type_mapping_dict = {
"Full text": "text",
"Tokenized to sentences": "sentence",
}
polemo_subset = load_dataset(
selected_dataset, f"{domain}_{text_type_mapping_dict[text_type]}"
)
df = pd.concat(
[
polemo_subset["train"].to_pandas(),
polemo_subset["validation"].to_pandas(),
polemo_subset["test"].to_pandas(),
]
).head(10)
st.dataframe(df)
st.text_area(label="Latex code", value=df.style.to_latex())
with word_searching:
st.header("Observations containing a chosen word")
searched_word = st.text_input(label="Enter the word you are looking for below")
df_to_show = pd.concat(
[
DATA_DICT["train"].copy(),
DATA_DICT["validation"].copy(),
DATA_DICT["test"].copy(),
]
)
df_to_show = df_to_show.loc[df_to_show["text"].str.contains(searched_word)]
st.dataframe(df_to_show)
st.text_area(label="Latex code", value=df_to_show.style.to_latex())
with dataset_statistics:
st.header("Dataset statistics")
st.subheader("Number of samples in each data split")
metrics_df = pd.DataFrame.from_dict(
{
"Train": DATA_DICT["train"].shape[0],
"Validation": DATA_DICT["validation"].shape[0],
"Test": DATA_DICT["test"].shape[0],
"Total": sum(
[
DATA_DICT["train"].shape[0],
DATA_DICT["validation"].shape[0],
DATA_DICT["test"].shape[0],
]
),
},
orient="index",
).reset_index()
metrics_df.columns = ["Subset", "Number of samples"]
st.dataframe(metrics_df)
latex_df = metrics_df.style.to_latex()
st.text_area(label="Latex code", value=latex_df)
# Class distribution in each subset
st.subheader("Class distribution in each subset")
target_unique_values = DATA_DICT["train"]["target"].unique()
hist = (
pd.DataFrame(
[
df["target"].value_counts(normalize=True).rename(k)
for k, df in DATA_DICT.items()
]
)
.reset_index()
.rename({"index": "split_name"}, axis=1)
)
plot_data = [
go.Bar(
name=str(target_unique_values[i]),
x=DATA_SPLITS,
y=hist[target_unique_values[i]].values,
)
for i in range(len(target_unique_values))
]
barchart_class_dist = go.Figure(data=plot_data)
barchart_class_dist.update_layout(
barmode="group",
title_text="Barchart - class distribution",
xaxis_title="Split name",
yaxis_title="Number of data points",
)
st.plotly_chart(barchart_class_dist, use_container_width=True)
st.dataframe(hist)
st.text_area(label="Latex code", value=hist.style.to_latex())
# Number of words per observation
st.subheader("Number of words per observation in each subset")
hist_data_num_words = [
df["text"].apply(count_num_of_words) for df in DATA_DICT.values()
]
fig_num_words = ff.create_distplot(
hist_data_num_words, DATA_SPLITS, show_rug=False, bin_size=1
)
fig_num_words.update_traces(
nbinsx=100, autobinx=True, selector={"type": "histogram"}
)
fig_num_words.update_layout(
title_text="Histogram - number of characters per observation",
xaxis_title="Number of characters",
)
st.plotly_chart(fig_num_words, use_container_width=True)
# Number of characters per observation
st.subheader("Number of characters per observation in each subset")
hist_data_num_characters = [
df["text"].apply(count_num_of_characters) for df in DATA_DICT.values()
]
fig_num_chars = ff.create_distplot(
hist_data_num_characters, DATA_SPLITS, show_rug=False, bin_size=1
)
fig_num_chars.update_layout(
title_text="Histogram - number of characters per observation",
xaxis_title="Number of characters",
)
st.plotly_chart(fig_num_chars, use_container_width=True)
|