Spaces:
Runtime error
Runtime error
import numpy as np | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
from datasets import load_dataset | |
import pandas as pd | |
import plotly.figure_factory as ff | |
import plotly.graph_objects as go | |
from sklearn.manifold import TSNE | |
import streamlit as st | |
from clarin_datasets.dataset_to_show import DatasetToShow | |
from clarin_datasets.utils import ( | |
count_num_of_characters, | |
count_num_of_words, | |
embed_sentence, | |
PLOT_COLOR_PALETTE | |
) | |
class PolemoDataset(DatasetToShow): | |
def __init__(self): | |
DatasetToShow.__init__(self) | |
self.dataset_name = "clarin-pl/polemo2-official" | |
self.subsets = ["train", "validation", "test"] | |
self.description = f""" | |
Dataset link: https://huggingface.co/datasets/{self.dataset_name} | |
The PolEmo2.0 is a dataset of online consumer reviews from four domains: medicine, | |
hotels, products, and university. It is human-annotated on a level of full reviews and individual | |
sentences. Current version (PolEmo 2.0) contains 8,216 reviews having 57,466 sentences. Each text and | |
sentence was manually annotated with sentiment in the 2+1 scheme, which gives a total of 197, | |
046 annotations. About 85% of the reviews are from the medicine and hotel domains. Each review is | |
annotated with four labels: positive, negative, neutral, or ambiguous. """ | |
def load_data(self): | |
raw_dataset = load_dataset(self.dataset_name) | |
self.data_dict = { | |
subset: raw_dataset[subset].to_pandas() for subset in self.subsets | |
} | |
def show_dataset(self): | |
header = st.container() | |
description = st.container() | |
dataframe_head = st.container() | |
word_searching = st.container() | |
dataset_statistics = st.container() | |
tsne_projection = st.container() | |
with header: | |
st.title(self.dataset_name) | |
with description: | |
st.header("Dataset description") | |
st.write(self.description) | |
with dataframe_head: | |
filtering_options = self.data_dict["train"]["target"].unique().tolist() | |
filtering_options.append("All classes") | |
st.header("First 10 observations of a chosen class") | |
class_to_show = st.selectbox( | |
label="Select class to show", options=filtering_options | |
) | |
df_to_show = pd.concat( | |
[ | |
self.data_dict["train"].copy(), | |
self.data_dict["validation"].copy(), | |
self.data_dict["test"].copy(), | |
] | |
) | |
if class_to_show == "All classes": | |
df_to_show = df_to_show.head(10) | |
else: | |
df_to_show = df_to_show.loc[df_to_show["target"] == class_to_show].head( | |
10 | |
) | |
st.dataframe(df_to_show) | |
st.text_area(label="Latex code", value=df_to_show.style.to_latex()) | |
st.subheader("First 10 observations of a chosen domain and text type") | |
domain = st.selectbox( | |
label="Select domain", | |
options=["all", "hotels", "medicine", "products", "reviews"], | |
) | |
text_type = st.selectbox( | |
label="Select text type", | |
options=["Full text", "Tokenized to sentences"], | |
) | |
text_type_mapping_dict = { | |
"Full text": "text", | |
"Tokenized to sentences": "sentence", | |
} | |
polemo_subset = load_dataset( | |
self.dataset_name, | |
f"{domain}_{text_type_mapping_dict[text_type]}", | |
) | |
df = pd.concat( | |
[ | |
polemo_subset["train"].to_pandas(), | |
polemo_subset["validation"].to_pandas(), | |
polemo_subset["test"].to_pandas(), | |
] | |
).head(10) | |
st.dataframe(df) | |
st.text_area(label="Latex code", value=df.style.to_latex()) | |
with word_searching: | |
st.header("Observations containing a chosen word") | |
searched_word = st.text_input( | |
label="Enter the word you are looking for below" | |
) | |
df_to_show = pd.concat( | |
[ | |
self.data_dict["train"].copy(), | |
self.data_dict["validation"].copy(), | |
self.data_dict["test"].copy(), | |
] | |
) | |
df_to_show = df_to_show.loc[df_to_show["text"].str.contains(searched_word)] | |
st.dataframe(df_to_show) | |
st.text_area(label="Latex code", value=df_to_show.style.to_latex()) | |
with dataset_statistics: | |
st.header("Dataset statistics") | |
st.subheader("Number of samples in each data split") | |
metrics_df = pd.DataFrame.from_dict( | |
{ | |
"Train": self.data_dict["train"].shape[0], | |
"Validation": self.data_dict["validation"].shape[0], | |
"Test": self.data_dict["test"].shape[0], | |
"Total": sum( | |
[ | |
self.data_dict["train"].shape[0], | |
self.data_dict["validation"].shape[0], | |
self.data_dict["test"].shape[0], | |
] | |
), | |
}, | |
orient="index", | |
).reset_index() | |
metrics_df.columns = ["Subset", "Number of samples"] | |
st.dataframe(metrics_df) | |
latex_df = metrics_df.style.to_latex() | |
st.text_area(label="Latex code", value=latex_df) | |
# Class distribution in each subset | |
st.subheader("Class distribution in each subset") | |
target_unique_values = self.data_dict["train"]["target"].unique() | |
hist = ( | |
pd.DataFrame( | |
[ | |
df["target"].value_counts(normalize=True).rename(k) | |
for k, df in self.data_dict.items() | |
] | |
) | |
.reset_index() | |
.rename({"index": "split_name"}, axis=1) | |
) | |
plot_data = [ | |
go.Bar( | |
name=str(target_unique_values[i]), | |
x=self.subsets, | |
y=hist[target_unique_values[i]].values, | |
) | |
for i in range(len(target_unique_values)) | |
] | |
barchart_class_dist = go.Figure(data=plot_data) | |
barchart_class_dist.update_layout( | |
barmode="group", | |
title_text="Barchart - class distribution", | |
xaxis_title="Split name", | |
yaxis_title="Number of data points", | |
) | |
st.plotly_chart(barchart_class_dist, use_container_width=True) | |
st.dataframe(hist) | |
st.text_area(label="Latex code", value=hist.style.to_latex()) | |
# Number of words per observation | |
st.subheader("Number of words per observation in each subset") | |
hist_data_num_words = [ | |
df["text"].apply(count_num_of_words) for df in self.data_dict.values() | |
] | |
fig_num_words = ff.create_distplot( | |
hist_data_num_words, self.subsets, show_rug=False, bin_size=1 | |
) | |
fig_num_words.update_traces( | |
nbinsx=100, autobinx=True, selector={"type": "histogram"} | |
) | |
fig_num_words.update_layout( | |
title_text="Histogram - number of characters per observation", | |
xaxis_title="Number of characters", | |
) | |
st.plotly_chart(fig_num_words, use_container_width=True) | |
# Number of characters per observation | |
st.subheader("Number of characters per observation in each subset") | |
hist_data_num_characters = [ | |
df["text"].apply(count_num_of_characters) | |
for df in self.data_dict.values() | |
] | |
fig_num_chars = ff.create_distplot( | |
hist_data_num_characters, self.subsets, show_rug=False, bin_size=1 | |
) | |
fig_num_chars.update_layout( | |
title_text="Histogram - number of characters per observation", | |
xaxis_title="Number of characters", | |
) | |
st.plotly_chart(fig_num_chars, use_container_width=True) | |
with tsne_projection: | |
st.header("t-SNE projection of the dataset") | |
subset_to_project = st.selectbox( | |
label="Select subset to project", options=self.subsets | |
) | |
sentences = self.data_dict[subset_to_project]["text"].values | |
reducer = TSNE( | |
n_components=2 | |
) | |
embedded_sentences = np.array( | |
[embed_sentence(text) for text in sentences] | |
) | |
transformed_embeddings = reducer.fit_transform(embedded_sentences) | |
fig, ax = plt.subplots() | |
ax.scatter( | |
x=transformed_embeddings[:, 0], | |
y=transformed_embeddings[:, 1], | |
c=[ | |
PLOT_COLOR_PALETTE[x] | |
for x in self.data_dict[subset_to_project]["target"].values | |
], | |
) | |
st.pyplot(fig) | |