File size: 3,422 Bytes
1ffc326
 
 
79410f6
 
 
 
18abd06
1ffc326
 
 
08ae6c5
 
1ffc326
 
 
 
 
 
 
 
 
55cc480
 
1ffc326
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08ae6c5
18abd06
6902167
ca54606
 
 
 
 
 
ae8f4f4
3042a5d
ca54606
 
6902167
b686823
08ae6c5
1ffc326
 
08ae6c5
1ffc326
7135a84
08ae6c5
 
 
 
 
1ffc326
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import logging
import pprint

from huggingface_hub import snapshot_download

logging.getLogger("openai").setLevel(logging.WARNING)

from src.backend.run_eval_suite_lighteval import run_evaluation
from src.backend.manage_requests import check_completed_evals, get_eval_requests, set_eval_request
from src.backend.sort_queue import sort_models_by_priority

from src.envs import QUEUE_REPO, EVAL_REQUESTS_PATH_BACKEND, RESULTS_REPO, EVAL_RESULTS_PATH_BACKEND, API, LIMIT, TOKEN, ACCELERATOR, VENDOR, REGION
from src.about import TASKS_LIGHTEVAL

logging.basicConfig(level=logging.ERROR)
pp = pprint.PrettyPrinter(width=80)

PENDING_STATUS = "PENDING"
RUNNING_STATUS = "RUNNING"
FINISHED_STATUS = "FINISHED"
FAILED_STATUS = "FAILED"

snapshot_download(repo_id=RESULTS_REPO, revision="main", local_dir=EVAL_RESULTS_PATH_BACKEND, repo_type="dataset", max_workers=60, token=TOKEN)
snapshot_download(repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH_BACKEND, repo_type="dataset", max_workers=60, token=TOKEN)

def run_auto_eval():
    current_pending_status = [PENDING_STATUS]

    # pull the eval dataset from the hub and parse any eval requests
    # check completed evals and set them to finished
    check_completed_evals(
        api=API,
        checked_status=RUNNING_STATUS,
        completed_status=FINISHED_STATUS,
        failed_status=FAILED_STATUS,
        hf_repo=QUEUE_REPO,
        local_dir=EVAL_REQUESTS_PATH_BACKEND,
        hf_repo_results=RESULTS_REPO,
        local_dir_results=EVAL_RESULTS_PATH_BACKEND
    )

    # Get all eval request that are PENDING, if you want to run other evals, change this parameter
    eval_requests = get_eval_requests(job_status=current_pending_status, hf_repo=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND)
    # Sort the evals by priority (first submitted first run)
    eval_requests = sort_models_by_priority(api=API, models=eval_requests)

    print(f"Found {len(eval_requests)} {','.join(current_pending_status)} eval requests")

    if len(eval_requests) == 0:
        return

    eval_request = eval_requests[0]
    pp.pprint(eval_request)

    set_eval_request(
        api=API,
        eval_request=eval_request,
        set_to_status=RUNNING_STATUS,
        hf_repo=QUEUE_REPO,
        local_dir=EVAL_REQUESTS_PATH_BACKEND,
    )

    # This needs to be done
    #instance_size, instance_type = get_instance_for_model(eval_request)
    # For GPU
    if not eval_request or eval_request.params < 0:
        raise ValueError("Couldn't detect number of params, please make sure the metadata is available")
    elif eval_request.params < 4:
        instance_size, instance_type = "small", "g4dn.xlarge" 
    elif eval_request.params < 9:
        instance_size, instance_type = "medium", "g5.2xlarge" 
    elif eval_request.params < 24:
        instance_size, instance_type = "xxlarge", "g5.12xlarge"
    else:
        raise ValueError("Number of params too big, can't run this model")
    # For CPU
    # instance_size, instance_type = "medium", "c6i"

    run_evaluation(
        eval_request=eval_request, 
        task_names=TASKS_LIGHTEVAL, 
        local_dir=EVAL_RESULTS_PATH_BACKEND,
        batch_size=25, 
        accelerator=ACCELERATOR, 
        region=REGION, 
        vendor=VENDOR, 
        instance_size=instance_size, 
        instance_type=instance_type,  
        limit=LIMIT
        )


if __name__ == "__main__":
    run_auto_eval()