File size: 6,180 Bytes
d6614dc
4cac868
d6614dc
9ef0f25
29b5baf
433f4b7
 
 
4cac868
 
 
 
 
 
 
 
 
 
 
 
 
 
808cfce
 
 
 
 
 
 
 
 
 
a006f1b
9ef0f25
a006f1b
 
9ef0f25
 
4cac868
a006f1b
 
 
 
 
 
 
 
 
 
999b913
 
433f4b7
 
f6ee8cd
433f4b7
 
 
 
f6ee8cd
 
 
 
 
 
 
 
 
fd1210f
 
 
 
 
 
433f4b7
 
9ef0f25
 
 
808cfce
9ef0f25
29b5baf
d6614dc
9ef0f25
fd1210f
9ef0f25
0dcdf8e
a006f1b
9ef0f25
433f4b7
 
 
 
 
 
 
808cfce
fd1210f
808cfce
 
 
433f4b7
808cfce
 
efdb63c
 
808cfce
9ef0f25
fd1210f
efdb63c
fd1210f
efdb63c
 
 
 
 
 
9ef0f25
fd1210f
f6ee8cd
fd1210f
 
f6ee8cd
 
 
fd1210f
efdb63c
 
f6ee8cd
efdb63c
 
f6ee8cd
9ef0f25
fd1210f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
808cfce
433f4b7
808cfce
 
 
0dcdf8e
a006f1b
0dcdf8e
a006f1b
4cac868
a006f1b
4cac868
a006f1b
 
 
 
0dcdf8e
999b913
9ef0f25
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import gradio as gr
from PIL import Image, ImageDraw

from inference import generate_image

TASK_TO_INDEX = {"Task 1": 0, "Task 2": 1, "Task 3": 2, "Task 4": 3}


def create_marker_overlay(image_path: str, x: int, y: int) -> Image.Image:
    """
    Creates an image with a marker at the specified coordinates
    """
    base_image = Image.open(image_path)
    marked_image = base_image.copy()
    draw = ImageDraw.Draw(marked_image)
    marker_size = 10
    marker_color = "red"
    draw.line([x - marker_size, y, x + marker_size, y], fill=marker_color, width=2)
    draw.line([x, y - marker_size, x, y + marker_size], fill=marker_color, width=2)
    return marked_image


def update_reference_image(choice: int) -> tuple[str, int, str]:
    """
    Update the reference image display based on radio button selection
    Returns the image path, selected index, and corresponding heatmap
    """
    image_path = f"imgs/pattern_{choice}.png"
    heatmap_path = f"imgs/heatmap_{choice}.png"
    return image_path, choice, heatmap_path


def update_marker(image_idx: int, evt: gr.SelectData) -> tuple[Image.Image, tuple[int, int]]:
    """
    Update the coordinate selector with the marker
    Returns the marked image and the coordinates for the next function
    """
    x, y = evt.index[0], evt.index[1]
    heatmap_path = f"imgs/heatmap_{image_idx}.png"
    return create_marker_overlay(heatmap_path, x, y), (x, y)


def generate_output_image(image_idx: int, coords: tuple[int, int]) -> Image.Image:
    """
    Generate the output image based on the selected coordinates
    """
    x, y = coords
    x_norm, y_norm = x / 1155, y / 1155
    return generate_image(image_idx, x_norm, y_norm)


with gr.Blocks(
    css="""
    .radio-container {
        width: 450px !important;
        margin-left: auto !important;
        margin-right: auto !important;
    }
    .coordinate-container {
        width: 600px !important;
        height: 600px !important;
    }
    .coordinate-container img {
        width: 100% !important;
        height: 100% !important;
        object-fit: contain !important;
    }
    .documentation {
        margin-top: 2rem !important;
        padding: 1rem !important;
        background-color: #f8f9fa !important;
        border-radius: 8px !important;
    }
"""
) as demo:
    gr.Markdown(
        """
    # Interactive Image Generation
    Select a task using the radio buttons, then click on the coordinate selector to generate a new image.
    """
    )

    with gr.Row():
        # Left column
        with gr.Column(scale=1):
            selected_idx = gr.State(value=0)
            coords = gr.State()  # Add state for coordinates

            with gr.Column(elem_classes="radio-container"):
                task_select = gr.Radio(
                    choices=["Task 1", "Task 2", "Task 3", "Task 4"],
                    value="Task 1",
                    label="Select Task",
                    interactive=True,
                )

            gr.Markdown("### Reference Pattern")
            reference_image = gr.Image(
                value="imgs/pattern_0.png",
                show_label=False,
                interactive=False,
                height=300,
                width=450,
                show_download_button=False,
                show_fullscreen_button=False,
            )

            gr.Markdown("### Generated Output")
            output_image = gr.Image(
                show_label=False,
                height=300,
                width=450,
                show_download_button=False,
                show_fullscreen_button=False,
                interactive=False,
            )

        # Right column
        with gr.Column(scale=1):
            gr.Markdown("### Coordinate Selector")
            gr.Markdown("Click anywhere in the image below to select (x, y) coordinates in the latent space")
            with gr.Column(elem_classes="coordinate-container"):
                coord_selector = gr.Image(
                    value="imgs/heatmap_0.png",
                    show_label=False,
                    interactive=False,
                    sources=[],
                    container=True,
                    show_download_button=False,
                    show_fullscreen_button=False,
                )

    # Documentation section
    with gr.Column(elem_classes="documentation"):
        gr.Markdown(
            """
        ## Method Documentation
        
        ### How It Works
        This interactive demo showcases our novel image generation method that uses coordinate-based control. The process works as follows:
        
        1. **Task Selection**: Choose one of four different pattern generation tasks
        2. **Reference Pattern**: View the target pattern for the selected task
        3. **Coordinate Selection**: Click anywhere in the heatmap to specify where in the latent space you want to generate from
        4. **Generation**: The model generates a new image based on your selected coordinates
        
        ### Sample Results
        Here are some example outputs from our method:
        
        ![LPN Diagram](imgs/lpn_diagram.png)
        
        ### Technical Details
        Our approach uses a novel coordinate-conditioning mechanism that allows precise control over the generated patterns. The heatmap visualization shows the distribution of pattern characteristics across the latent space.
        
        For more information, please refer to our [paper](https://arxiv.org/pdf/2411.08706) or GitHub [repository](https://github.com/clement-bonnet/lpn).
        """
        )

    # Event handlers
    task_select.change(
        fn=lambda x: update_reference_image(TASK_TO_INDEX[x]),
        inputs=[task_select],
        outputs=[reference_image, selected_idx, coord_selector],
    )

    # Split the coordinate selection into two events with state passing
    coord_selector.select(
        fn=update_marker,
        inputs=[selected_idx],
        outputs=[coord_selector, coords],
        trigger_mode="multiple",
    ).then(
        fn=generate_output_image,
        inputs=[selected_idx, coords],
        outputs=output_image,
    )

demo.launch()