Spaces:
Running
Running
File size: 6,180 Bytes
d6614dc 4cac868 d6614dc 9ef0f25 29b5baf 433f4b7 4cac868 808cfce a006f1b 9ef0f25 a006f1b 9ef0f25 4cac868 a006f1b 999b913 433f4b7 f6ee8cd 433f4b7 f6ee8cd fd1210f 433f4b7 9ef0f25 808cfce 9ef0f25 29b5baf d6614dc 9ef0f25 fd1210f 9ef0f25 0dcdf8e a006f1b 9ef0f25 433f4b7 808cfce fd1210f 808cfce 433f4b7 808cfce efdb63c 808cfce 9ef0f25 fd1210f efdb63c fd1210f efdb63c 9ef0f25 fd1210f f6ee8cd fd1210f f6ee8cd fd1210f efdb63c f6ee8cd efdb63c f6ee8cd 9ef0f25 fd1210f 808cfce 433f4b7 808cfce 0dcdf8e a006f1b 0dcdf8e a006f1b 4cac868 a006f1b 4cac868 a006f1b 0dcdf8e 999b913 9ef0f25 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
import gradio as gr
from PIL import Image, ImageDraw
from inference import generate_image
TASK_TO_INDEX = {"Task 1": 0, "Task 2": 1, "Task 3": 2, "Task 4": 3}
def create_marker_overlay(image_path: str, x: int, y: int) -> Image.Image:
"""
Creates an image with a marker at the specified coordinates
"""
base_image = Image.open(image_path)
marked_image = base_image.copy()
draw = ImageDraw.Draw(marked_image)
marker_size = 10
marker_color = "red"
draw.line([x - marker_size, y, x + marker_size, y], fill=marker_color, width=2)
draw.line([x, y - marker_size, x, y + marker_size], fill=marker_color, width=2)
return marked_image
def update_reference_image(choice: int) -> tuple[str, int, str]:
"""
Update the reference image display based on radio button selection
Returns the image path, selected index, and corresponding heatmap
"""
image_path = f"imgs/pattern_{choice}.png"
heatmap_path = f"imgs/heatmap_{choice}.png"
return image_path, choice, heatmap_path
def update_marker(image_idx: int, evt: gr.SelectData) -> tuple[Image.Image, tuple[int, int]]:
"""
Update the coordinate selector with the marker
Returns the marked image and the coordinates for the next function
"""
x, y = evt.index[0], evt.index[1]
heatmap_path = f"imgs/heatmap_{image_idx}.png"
return create_marker_overlay(heatmap_path, x, y), (x, y)
def generate_output_image(image_idx: int, coords: tuple[int, int]) -> Image.Image:
"""
Generate the output image based on the selected coordinates
"""
x, y = coords
x_norm, y_norm = x / 1155, y / 1155
return generate_image(image_idx, x_norm, y_norm)
with gr.Blocks(
css="""
.radio-container {
width: 450px !important;
margin-left: auto !important;
margin-right: auto !important;
}
.coordinate-container {
width: 600px !important;
height: 600px !important;
}
.coordinate-container img {
width: 100% !important;
height: 100% !important;
object-fit: contain !important;
}
.documentation {
margin-top: 2rem !important;
padding: 1rem !important;
background-color: #f8f9fa !important;
border-radius: 8px !important;
}
"""
) as demo:
gr.Markdown(
"""
# Interactive Image Generation
Select a task using the radio buttons, then click on the coordinate selector to generate a new image.
"""
)
with gr.Row():
# Left column
with gr.Column(scale=1):
selected_idx = gr.State(value=0)
coords = gr.State() # Add state for coordinates
with gr.Column(elem_classes="radio-container"):
task_select = gr.Radio(
choices=["Task 1", "Task 2", "Task 3", "Task 4"],
value="Task 1",
label="Select Task",
interactive=True,
)
gr.Markdown("### Reference Pattern")
reference_image = gr.Image(
value="imgs/pattern_0.png",
show_label=False,
interactive=False,
height=300,
width=450,
show_download_button=False,
show_fullscreen_button=False,
)
gr.Markdown("### Generated Output")
output_image = gr.Image(
show_label=False,
height=300,
width=450,
show_download_button=False,
show_fullscreen_button=False,
interactive=False,
)
# Right column
with gr.Column(scale=1):
gr.Markdown("### Coordinate Selector")
gr.Markdown("Click anywhere in the image below to select (x, y) coordinates in the latent space")
with gr.Column(elem_classes="coordinate-container"):
coord_selector = gr.Image(
value="imgs/heatmap_0.png",
show_label=False,
interactive=False,
sources=[],
container=True,
show_download_button=False,
show_fullscreen_button=False,
)
# Documentation section
with gr.Column(elem_classes="documentation"):
gr.Markdown(
"""
## Method Documentation
### How It Works
This interactive demo showcases our novel image generation method that uses coordinate-based control. The process works as follows:
1. **Task Selection**: Choose one of four different pattern generation tasks
2. **Reference Pattern**: View the target pattern for the selected task
3. **Coordinate Selection**: Click anywhere in the heatmap to specify where in the latent space you want to generate from
4. **Generation**: The model generates a new image based on your selected coordinates
### Sample Results
Here are some example outputs from our method:

### Technical Details
Our approach uses a novel coordinate-conditioning mechanism that allows precise control over the generated patterns. The heatmap visualization shows the distribution of pattern characteristics across the latent space.
For more information, please refer to our [paper](https://arxiv.org/pdf/2411.08706) or GitHub [repository](https://github.com/clement-bonnet/lpn).
"""
)
# Event handlers
task_select.change(
fn=lambda x: update_reference_image(TASK_TO_INDEX[x]),
inputs=[task_select],
outputs=[reference_image, selected_idx, coord_selector],
)
# Split the coordinate selection into two events with state passing
coord_selector.select(
fn=update_marker,
inputs=[selected_idx],
outputs=[coord_selector, coords],
trigger_mode="multiple",
).then(
fn=generate_output_image,
inputs=[selected_idx, coords],
outputs=output_image,
)
demo.launch()
|