Spaces:
Running
Running
import gradio as gr | |
from PIL import Image, ImageDraw | |
from inference import generate_image | |
TASK_TO_INDEX = {"Task 1": 0, "Task 2": 1, "Task 3": 2, "Task 4": 3} | |
def create_marker_overlay(image_path: str, x: int, y: int) -> Image.Image: | |
""" | |
Creates an image with a marker at the specified coordinates | |
""" | |
base_image = Image.open(image_path) | |
marked_image = base_image.copy() | |
draw = ImageDraw.Draw(marked_image) | |
marker_size = 10 | |
marker_color = "red" | |
draw.line([x - marker_size, y, x + marker_size, y], fill=marker_color, width=2) | |
draw.line([x, y - marker_size, x, y + marker_size], fill=marker_color, width=2) | |
return marked_image | |
def update_reference_image(choice: int) -> tuple[str, int, str]: | |
""" | |
Update the reference image display based on radio button selection | |
Returns the image path, selected index, and corresponding heatmap | |
""" | |
image_path = f"imgs/pattern_{choice}.png" | |
heatmap_path = f"imgs/heatmap_{choice}.png" | |
return image_path, choice, heatmap_path | |
def update_marker(image_idx: int, evt: gr.SelectData) -> tuple[Image.Image, tuple[int, int]]: | |
""" | |
Update the coordinate selector with the marker | |
Returns the marked image and the coordinates for the next function | |
""" | |
x, y = evt.index[0], evt.index[1] | |
heatmap_path = f"imgs/heatmap_{image_idx}.png" | |
return create_marker_overlay(heatmap_path, x, y), (x, y) | |
def generate_output_image(image_idx: int, coords: tuple[int, int]) -> Image.Image: | |
""" | |
Generate the output image based on the selected coordinates | |
""" | |
x, y = coords | |
x_norm, y_norm = x / 1155, y / 1155 | |
return generate_image(image_idx, x_norm, y_norm) | |
with gr.Blocks( | |
css=""" | |
.radio-container { | |
width: 450px !important; | |
margin-left: auto !important; | |
margin-right: auto !important; | |
} | |
.coordinate-container { | |
width: 600px !important; | |
height: 600px !important; | |
} | |
.coordinate-container img { | |
width: 100% !important; | |
height: 100% !important; | |
object-fit: contain !important; | |
} | |
.documentation { | |
margin-top: 2rem !important; | |
padding: 1rem !important; | |
background-color: #f8f9fa !important; | |
border-radius: 8px !important; | |
} | |
""" | |
) as demo: | |
gr.Markdown( | |
""" | |
# Interactive Image Generation | |
Select a task using the radio buttons, then click on the coordinate selector to generate a new image. | |
""" | |
) | |
with gr.Row(): | |
# Left column | |
with gr.Column(scale=1): | |
selected_idx = gr.State(value=0) | |
coords = gr.State() # Add state for coordinates | |
with gr.Column(elem_classes="radio-container"): | |
task_select = gr.Radio( | |
choices=["Task 1", "Task 2", "Task 3", "Task 4"], | |
value="Task 1", | |
label="Select Task", | |
interactive=True, | |
) | |
gr.Markdown("### Reference Pattern") | |
reference_image = gr.Image( | |
value="imgs/pattern_0.png", | |
show_label=False, | |
interactive=False, | |
height=300, | |
width=450, | |
show_download_button=False, | |
show_fullscreen_button=False, | |
) | |
gr.Markdown("### Generated Output") | |
output_image = gr.Image( | |
show_label=False, | |
height=300, | |
width=450, | |
show_download_button=False, | |
show_fullscreen_button=False, | |
interactive=False, | |
) | |
# Right column | |
with gr.Column(scale=1): | |
gr.Markdown("### Coordinate Selector") | |
gr.Markdown("Click anywhere in the image below to select (x, y) coordinates in the latent space") | |
with gr.Column(elem_classes="coordinate-container"): | |
coord_selector = gr.Image( | |
value="imgs/heatmap_0.png", | |
show_label=False, | |
interactive=False, | |
sources=[], | |
container=True, | |
show_download_button=False, | |
show_fullscreen_button=False, | |
) | |
# Documentation section | |
with gr.Column(elem_classes="documentation"): | |
gr.Markdown( | |
""" | |
## Method Documentation | |
### How It Works | |
This interactive demo showcases our novel image generation method that uses coordinate-based control. The process works as follows: | |
1. **Task Selection**: Choose one of four different pattern generation tasks | |
2. **Reference Pattern**: View the target pattern for the selected task | |
3. **Coordinate Selection**: Click anywhere in the heatmap to specify where in the latent space you want to generate from | |
4. **Generation**: The model generates a new image based on your selected coordinates | |
### Sample Results | |
Here are some example outputs from our method: | |
 | |
### Technical Details | |
Our approach uses a novel coordinate-conditioning mechanism that allows precise control over the generated patterns. The heatmap visualization shows the distribution of pattern characteristics across the latent space. | |
For more information, please refer to our [paper](https://arxiv.org/pdf/2411.08706) or GitHub [repository](https://github.com/clement-bonnet/lpn). | |
""" | |
) | |
# Event handlers | |
task_select.change( | |
fn=lambda x: update_reference_image(TASK_TO_INDEX[x]), | |
inputs=[task_select], | |
outputs=[reference_image, selected_idx, coord_selector], | |
) | |
# Split the coordinate selection into two events with state passing | |
coord_selector.select( | |
fn=update_marker, | |
inputs=[selected_idx], | |
outputs=[coord_selector, coords], | |
trigger_mode="multiple", | |
).then( | |
fn=generate_output_image, | |
inputs=[selected_idx, coords], | |
outputs=output_image, | |
) | |
demo.launch() | |