Spaces:
Runtime error
Runtime error
File size: 17,470 Bytes
3c49f9a ccb097b 0ba2339 7dd7d9c 0ba2339 f4d41e7 a5e6b9f 7dd7d9c 3391c05 0ba2339 7dd7d9c 0ba2339 7dd7d9c 3c49f9a 0ba2339 7dd7d9c 4912220 3c49f9a a5e6b9f 0ba2339 7dd7d9c 0ba2339 7dd7d9c 0ba2339 a5e6b9f 0ba2339 7dd7d9c 0ba2339 7dd7d9c a5e6b9f 0ba2339 a5e6b9f 0ba2339 7dd7d9c 0ba2339 a5e6b9f 0ba2339 a5e6b9f 3c63bff a5e6b9f 5b94f47 1256c38 668eb9a eb440a3 50f5169 a5e6b9f 668eb9a a5e6b9f 0ba2339 a5e6b9f 7dd7d9c 3c49f9a 7dd7d9c 0ba2339 7dd7d9c 0ba2339 7dd7d9c 0ba2339 7dd7d9c 0ba2339 7dd7d9c 0ba2339 7dd7d9c 0ba2339 7dd7d9c 0d28f6f 0ba2339 7dd7d9c 0ba2339 7dd7d9c 0ba2339 7dd7d9c 0ba2339 7dd7d9c 0ba2339 7dd7d9c 0ba2339 3c49f9a 7dd7d9c 3c49f9a 7dd7d9c a5e6b9f 7dd7d9c 0ba2339 7dd7d9c 0ba2339 7dd7d9c 0ba2339 7dd7d9c 0ba2339 7dd7d9c 0ba2339 7dd7d9c 0ba2339 7dd7d9c 0ba2339 7dd7d9c 0ba2339 7dd7d9c 0ba2339 7dd7d9c 0ba2339 7dd7d9c 0ba2339 7dd7d9c 0ba2339 7dd7d9c 0ba2339 7dd7d9c 0ba2339 7dd7d9c 0ba2339 7dd7d9c 0ba2339 3c49f9a 3c63bff f4d41e7 3c63bff 7dd7d9c 3c49f9a 0ba2339 3c49f9a 52ae519 3c49f9a 0ba2339 3c49f9a 7dd7d9c 3c63bff 7dd7d9c 3c63bff 3c49f9a 7dd7d9c 3c49f9a 7dd7d9c 3c49f9a 7dd7d9c 0ba2339 7dd7d9c 0ba2339 7dd7d9c 0ba2339 3c63bff 0ba2339 7dd7d9c 3c49f9a 7dd7d9c 3c49f9a 3c63bff 3c49f9a 7dd7d9c 3c49f9a 550300e 3c49f9a a5e6b9f 3c49f9a a5e6b9f 3c49f9a 0ba2339 3c49f9a 7dd7d9c 3c63bff 7dd7d9c 3c49f9a 7dd7d9c 3c49f9a 7dd7d9c 3c49f9a 7dd7d9c 3c63bff 3c49f9a 7dd7d9c 0ba2339 7dd7d9c 3c63bff 7dd7d9c 0ba2339 7dd7d9c 0d28f6f 9acec60 7dd7d9c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 |
import math
import random
import os
import cv2
import gradio as gr
import numpy as np
import PIL
import gc
#import spaces
import torch
from diffusers import LCMScheduler
from diffusers.models import ControlNetModel
from diffusers.utils import load_image
from insightface.app import FaceAnalysis
from PIL import Image
from pipeline_stable_diffusion_xl_instantid import StableDiffusionXLInstantIDPipeline
from style_template import styles
# global variable
MAX_SEED = np.iinfo(np.int32).max
#device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16
if torch.backends.mps.is_available():
device = "mps"
torch_dtype = torch.float32
elif torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = "Watercolor"
# download checkpoints
from huggingface_hub import hf_hub_download
hf_hub_download(repo_id="InstantX/InstantID", filename="ControlNetModel/config.json", local_dir="./checkpoints")
hf_hub_download(
repo_id="InstantX/InstantID",
filename="ControlNetModel/diffusion_pytorch_model.safetensors",
local_dir="./checkpoints",
)
hf_hub_download(repo_id="InstantX/InstantID", filename="ip-adapter.bin", local_dir="./checkpoints")
hf_hub_download(repo_id="latent-consistency/lcm-lora-sdxl", filename="pytorch_lora_weights.safetensors", local_dir="./checkpoints")
# Load face encoder
app = FaceAnalysis(name="antelopev2", root="./", providers=["CPUExecutionProvider"])
app.prepare(ctx_id=0, det_size=(640, 640))
# Path to InstantID models
face_adapter = "./checkpoints/ip-adapter.bin"
controlnet_path = "./checkpoints/ControlNetModel"
lcm_lora_path = "./checkpoints/pytorch_lora_weights.safetensors"
# Load pipeline
#controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16)
controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch_dtype)
base_model_path = "wangqixun/YamerMIX_v8"
pipe = StableDiffusionXLInstantIDPipeline.from_pretrained(
base_model_path,
controlnet=controlnet,
#torch_dtype=torch.float16,
torch_dtype=torch_dtype,
safety_checker=None,
feature_extractor=None,
)
#pipe.cuda()
if os.environ.get("MODE") == "Default":
print("Default")
num_inference_steps = 30
guidance_scale = 5
# LCM
if os.environ.get("MODE") == "LCM":
print("LCM")
num_inference_steps = 4
guidance_scale = 2
pipe.load_lora_weights(lcm_lora_path)
pipe.fuse_lora()
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
print(f"default: num_inference_steps={num_inference_steps}, guidance_scale={guidance_scale}")
if device == 'mps':
pipe.to("mps", torch_dtype)
pipe.enable_attention_slicing()
elif device == 'cuda':
pipe.cuda()
pipe.load_ip_adapter_instantid(face_adapter)
#pipe.image_proj_model.to("cuda")
#pipe.unet.to("cuda")
if device == 'mps' or device == 'cuda':
pipe.image_proj_model.to(device)
pipe.unet.to(device)
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def remove_tips():
return gr.update(visible=False)
def get_example():
case = [
[
"./examples/yann-lecun_resize.jpg",
"a man",
"Snow",
"(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
],
[
"./examples/musk_resize.jpeg",
"a man",
"Mars",
"(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
],
[
"./examples/sam_resize.png",
"a man",
"Jungle",
"(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, gree",
],
[
"./examples/schmidhuber_resize.png",
"a man",
"Neon",
"(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
],
[
"./examples/kaifu_resize.png",
"a man",
"Vibrant Color",
"(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
],
]
return case
def run_for_examples(face_file, prompt, style, negative_prompt):
return generate_image(face_file, None, prompt, negative_prompt, style, True, 30, 0.8, 0.8, 5, 42)
def convert_from_cv2_to_image(img: np.ndarray) -> Image:
return Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
def convert_from_image_to_cv2(img: Image) -> np.ndarray:
return cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
def draw_kps(image_pil, kps, color_list=[(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0), (255, 0, 255)]):
stickwidth = 4
limbSeq = np.array([[0, 2], [1, 2], [3, 2], [4, 2]])
kps = np.array(kps)
w, h = image_pil.size
out_img = np.zeros([h, w, 3])
for i in range(len(limbSeq)):
index = limbSeq[i]
color = color_list[index[0]]
x = kps[index][:, 0]
y = kps[index][:, 1]
length = ((x[0] - x[1]) ** 2 + (y[0] - y[1]) ** 2) ** 0.5
angle = math.degrees(math.atan2(y[0] - y[1], x[0] - x[1]))
polygon = cv2.ellipse2Poly(
(int(np.mean(x)), int(np.mean(y))), (int(length / 2), stickwidth), int(angle), 0, 360, 1
)
out_img = cv2.fillConvexPoly(out_img.copy(), polygon, color)
out_img = (out_img * 0.6).astype(np.uint8)
for idx_kp, kp in enumerate(kps):
color = color_list[idx_kp]
x, y = kp
out_img = cv2.circle(out_img.copy(), (int(x), int(y)), 10, color, -1)
out_img_pil = Image.fromarray(out_img.astype(np.uint8))
return out_img_pil
def resize_img(
input_image,
max_side=1280,
min_side=1024,
size=None,
pad_to_max_side=False,
mode=PIL.Image.BILINEAR,
base_pixel_number=64,
):
w, h = input_image.size
if size is not None:
w_resize_new, h_resize_new = size
else:
ratio = min_side / min(h, w)
w, h = round(ratio * w), round(ratio * h)
ratio = max_side / max(h, w)
input_image = input_image.resize([round(ratio * w), round(ratio * h)], mode)
w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number
h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number
input_image = input_image.resize([w_resize_new, h_resize_new], mode)
if pad_to_max_side:
res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255
offset_x = (max_side - w_resize_new) // 2
offset_y = (max_side - h_resize_new) // 2
res[offset_y : offset_y + h_resize_new, offset_x : offset_x + w_resize_new] = np.array(input_image)
input_image = Image.fromarray(res)
return input_image
def apply_style(style_name: str, positive: str, negative: str = "") -> tuple[str, str]:
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
return p.replace("{prompt}", positive), n + " " + negative
def check_input_image(face_image):
if face_image is None:
raise gr.Error("Cannot find any input face image! Please upload the face image")
#@spaces.GPU
def generate_image(
face_image_path,
pose_image_path,
prompt,
negative_prompt,
style_name,
enhance_face_region,
num_steps,
identitynet_strength_ratio,
adapter_strength_ratio,
guidance_scale,
seed,
progress=gr.Progress(track_tqdm=True),
):
if prompt is None:
prompt = "a person"
# apply the style template
prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt)
face_image = load_image(face_image_path)
face_image = resize_img(face_image)
face_image_cv2 = convert_from_image_to_cv2(face_image)
height, width, _ = face_image_cv2.shape
# Extract face features
face_info = app.get(face_image_cv2)
if len(face_info) == 0:
raise gr.Error("Cannot find any face in the image! Please upload another person image")
face_info = sorted(face_info, key=lambda x: (x["bbox"][2] - x["bbox"][0]) * x["bbox"][3] - x["bbox"][1])[
-1
] # only use the maximum face
face_emb = face_info["embedding"]
face_kps = draw_kps(convert_from_cv2_to_image(face_image_cv2), face_info["kps"])
if pose_image_path is not None:
pose_image = load_image(pose_image_path)
pose_image = resize_img(pose_image)
pose_image_cv2 = convert_from_image_to_cv2(pose_image)
face_info = app.get(pose_image_cv2)
if len(face_info) == 0:
raise gr.Error("Cannot find any face in the reference image! Please upload another person image")
face_info = face_info[-1]
face_kps = draw_kps(pose_image, face_info["kps"])
width, height = face_kps.size
if enhance_face_region:
control_mask = np.zeros([height, width, 3])
x1, y1, x2, y2 = face_info["bbox"]
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
control_mask[y1:y2, x1:x2] = 255
control_mask = Image.fromarray(control_mask.astype(np.uint8))
else:
control_mask = None
generator = torch.Generator(device=device).manual_seed(seed)
print("Start inference...")
print(f"[Debug] Prompt: {prompt}, \n[Debug] Neg Prompt: {negative_prompt}")
pipe.set_ip_adapter_scale(adapter_strength_ratio)
images = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
image_embeds=face_emb,
image=face_kps,
control_mask=control_mask,
controlnet_conditioning_scale=float(identitynet_strength_ratio),
num_inference_steps=num_steps,
guidance_scale=guidance_scale,
height=height,
width=width,
generator=generator,
).images
gradio_temp_dir = os.environ['GRADIO_TEMP_DIR']
temp_file_path = os.path.join(gradio_temp_dir, "image.png")
images[0].save(temp_file_path, format="PNG")
print(f"Image saved in: {temp_file_path}")
gc.collect()
if device == 'mps':
torch.mps.empty_cache()
elif device == 'cuda':
torch.cuda.empty_cache()
return images[0], gr.update(visible=True), temp_file_path
### Description
title = r"""
<h1 align="center">InstantID: Zero-shot Identity-Preserving Generation in Seconds</h1>
"""
description = r"""
<b>Official 🤗 Gradio demo</b> for <a href='https://github.com/InstantID/InstantID' target='_blank'><b>InstantID: Zero-shot Identity-Preserving Generation in Seconds</b></a>.<br>
How to use:<br>
1. Upload a person image. For multiple person images, we will only detect the biggest face. Make sure face is not too small and not significantly blocked or blurred.
2. (Optionally) upload another person image as reference pose. If not uploaded, we will use the first person image to extract landmarks. If you use a cropped face at step1, it is recommeneded to upload it to extract a new pose.
3. Enter a text prompt as done in normal text-to-image models.
4. Click the <b>Submit</b> button to start customizing.
5. Share your customizd photo with your friends, enjoy😊!
"""
article = r"""
---
📝 **Citation**
<br>
If our work is helpful for your research or applications, please cite us via:
```bibtex
@article{wang2024instantid,
title={InstantID: Zero-shot Identity-Preserving Generation in Seconds},
author={Wang, Qixun and Bai, Xu and Wang, Haofan and Qin, Zekui and Chen, Anthony},
journal={arXiv preprint arXiv:2401.07519},
year={2024}
}
```
📧 **Contact**
<br>
If you have any questions, please feel free to open an issue or directly reach us out at <b>haofanwang.ai@gmail.com</b>.
"""
tips = r"""
### Usage tips of InstantID
1. If you're unsatisfied with the similarity, increase the weight of controlnet_conditioning_scale (IdentityNet) and ip_adapter_scale (Adapter).
2. If the generated image is over-saturated, decrease the ip_adapter_scale. If not work, decrease controlnet_conditioning_scale.
3. If text control is not as expected, decrease ip_adapter_scale.
4. Find a good base model always makes a difference.
"""
css = """
.gradio-container { width: 90% !important }
#row-height { height: 65px !important }
"""
with gr.Blocks(css=css) as demo:
# description
gr.Markdown(title)
gr.Markdown(description)
with gr.Row():
with gr.Column():
# upload face image
face_file = gr.Image(label="Upload a photo of your face", type="filepath")
# optional: upload a reference pose image
pose_file = gr.Image(label="Upload a reference pose image (optional)", type="filepath")
# prompt
prompt = gr.Textbox(
label="Prompt",
info="Give simple prompt is enough to achieve good face fedility",
placeholder="A photo of a person",
value="",
)
submit = gr.Button("Submit", variant="primary")
style = gr.Dropdown(label="Style template", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME)
# strength
identitynet_strength_ratio = gr.Slider(
label="IdentityNet strength (for fidelity)",
minimum=0,
maximum=1.5,
step=0.05,
value=0.80,
)
adapter_strength_ratio = gr.Slider(
label="Image adapter strength (for detail)",
minimum=0,
maximum=1.5,
step=0.05,
value=0.80,
)
with gr.Accordion(open=False, label="Advanced Options"):
negative_prompt = gr.Textbox(
label="Negative Prompt",
placeholder="low quality",
value="(lowres, low quality, worst quality:1.2), (text:1.2), (frame:1.2), watermark, deformed, ugly, deformed eyes, blur, blurry, noisy, out of focus, nudity, naked, skimpy, scanty, bare skin, exposed, monochrome, pet collar",
)
num_steps = gr.Slider(
label="Number of sample steps",
minimum=1,
maximum=100,
step=1,
value=num_inference_steps,
)
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.1,
maximum=10.0,
step=0.1,
value=guidance_scale,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
enhance_face_region = gr.Checkbox(label="Enhance non-face region", value=True)
with gr.Column():
output_image = gr.Image(label="Generated Image")
download_image = gr.File(label="Download Image", file_count="single", elem_id="row-height")
usage_tips = gr.Markdown(label="Usage tips of InstantID", value=tips, visible=False)
submit.click(
fn=remove_tips,
outputs=usage_tips,
queue=False,
api_name=False,
).then(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=check_input_image,
inputs=face_file,
queue=False,
api_name=False,
).success(
fn=generate_image,
inputs=[
face_file,
pose_file,
prompt,
negative_prompt,
style,
enhance_face_region,
num_steps,
identitynet_strength_ratio,
adapter_strength_ratio,
guidance_scale,
seed,
],
outputs=[output_image, usage_tips, download_image],
)
gr.Examples(
examples=get_example(),
inputs=[face_file, prompt, style, negative_prompt],
outputs=[output_image, usage_tips, download_image],
fn=run_for_examples,
)
gr.Markdown(article)
demo.queue(api_open=False)
demo.launch()
|