File size: 6,750 Bytes
8ccf632
 
 
ea02acf
8ccf632
1f688c5
81b26b5
3c6eab5
06f0278
8ccf632
f38676b
 
 
 
 
 
 
 
326965c
f38676b
 
 
 
 
 
 
 
 
 
 
8ccf632
 
06f0278
8ccf632
f38676b
 
 
 
 
 
 
 
 
 
 
 
 
7d6f42b
f38676b
3c6eab5
f38676b
7d6f42b
b3dbc86
f38676b
7d6f42b
b3dbc86
7eb2f5e
 
 
f38676b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5d52fb
f38676b
 
4669ef8
 
f5d52fb
f38676b
 
 
 
 
 
 
 
 
 
 
ea02acf
8ccf632
f38676b
54192f0
 
8ccf632
 
 
 
 
 
06f0278
 
8ccf632
 
 
 
06f0278
 
 
8ccf632
 
 
 
 
e2944a6
8ccf632
 
 
 
 
 
6ebb7df
 
73e25cc
8ccf632
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a779d1
8ccf632
 
 
 
 
 
2b62414
8ccf632
 
 
 
 
4669ef8
1f688c5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import gradio as gr
import numpy as np
import random
#import spaces
import torch
import devicetorch
from diffusers import DiffusionPipeline
import os


# Quant
from optimum.quanto import freeze, qfloat8, quantize
from diffusers import FlowMatchEulerDiscreteScheduler, AutoencoderKL
from diffusers.models.transformers.transformer_flux import FluxTransformer2DModel
from diffusers.pipelines.flux.pipeline_flux import FluxPipeline
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast


DEVICE = devicetorch.get(torch)
#if device == "cuda":
#    dtype = torch.bfloat16
#elif device == "mps":
#    dtype = torch.float16
#else:
#    dtype = torch.float32
##dtype = torch.bfloat16
##device = "cuda" if torch.cuda.is_available() else "cpu"
#
##pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16, revision="refs/pr/1").to(device)
#pipe = DiffusionPipeline.from_pretrained("cocktailpeanut/xulf-s", torch_dtype=dtype).to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048


def init():
    global pipe

    dtype = torch.bfloat16

    # schnell is the distilled turbo model. For the CFG distilled model, use:
    # bfl_repo = "black-forest-labs/FLUX.1-dev"
    # revision = "refs/pr/3"
    #
    # The undistilled model that uses CFG ("pro") which can use negative prompts
    # was not released.
    bfl_repo = "cocktailpeanut/xulf-s"
    te_repo = "comfyanonymous/flux_text_encoders"


    scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(bfl_repo, subfolder="scheduler")
    #text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=dtype)
    text_encoder = CLIPTextModel.from_pretrained(os.path.join(os.getcwd(), "flux_text_encoders/clip_l.safetensors"), torch_dtype=dtype)
    tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=dtype)
    #text_encoder_2 = T5EncoderModel.from_pretrained(bfl_repo, subfolder="text_encoder_2", torch_dtype=dtype)
    text_encoder_2 = T5EncoderModel.from_pretrained(os.path.join(os.getcwd(), "flux_text_encoders/t5xxl_fp8_e4m3fn.safetensors"), torch_dtype=dtype)
    tokenizer_2 = T5TokenizerFast.from_pretrained(bfl_repo, subfolder="tokenizer_2", torch_dtype=dtype)
    vae = AutoencoderKL.from_pretrained(bfl_repo, subfolder="vae", torch_dtype=dtype)
    transformer = FluxTransformer2DModel.from_pretrained(bfl_repo, subfolder="transformer", torch_dtype=dtype)

    # Experimental: Try this to load in 4-bit for <16GB cards.
    #
    # from optimum.quanto import qint4
    # quantize(transformer, weights=qint4, exclude=["proj_out", "x_embedder", "norm_out", "context_embedder"])
    # freeze(transformer)
    quantize(transformer, weights=qfloat8)
    freeze(transformer)

    quantize(text_encoder_2, weights=qfloat8)
    freeze(text_encoder_2)

    pipe = FluxPipeline(
        scheduler=scheduler,
        text_encoder=text_encoder,
        tokenizer=tokenizer,
        text_encoder_2=None,
        tokenizer_2=tokenizer_2,
        vae=vae,
        transformer=None,
    )
    pipe.text_encoder_2 = text_encoder_2
    pipe.transformer = transformer
    if DEVICE == "cuda":
        pipe.enable_model_cpu_offload()
    pipe.to(DEVICE)

#    generator = torch.Generator().manual_seed(12345)
#    image = pipe(
#        prompt='nekomusume cat girl, digital painting',
#        width=1024,
#        height=1024,
#        num_inference_steps=4,
#        generator=generator,
#        guidance_scale=3.5,
#    ).images[0]

#@spaces.GPU()
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
    global pipe
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator().manual_seed(seed)
    image = pipe(
            prompt = prompt, 
            width = width,
            height = height,
            num_inference_steps = num_inference_steps, 
            generator = generator,
            guidance_scale=0.0
    ).images[0] 
    return image, seed
 
examples = [
    "a tiny astronaut hatching from an egg on the moon",
    "a cat holding a sign that says hello world",
    "an anime illustration of a wiener schnitzel",
]

css="""
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""

with gr.Blocks(css=css) as demo:
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""# FLUX.1 [schnell]
12B param rectified flow transformer distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) for 4 step generation
[[blog](https://blackforestlabs.ai/2024/07/31/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-schnell)]
        """)
        
        with gr.Row():
            
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            
            run_button = gr.Button("Run", scale=0)
        
        result = gr.Image(label="Result", show_label=False)
        
        with gr.Accordion("Advanced Settings", open=False):
            
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            
            with gr.Row():
                
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
                
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
            
            with gr.Row():
                
  
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=4,
                )
        
        gr.Examples(
            examples = examples,
            fn = infer,
            inputs = [prompt],
            outputs = [result, seed],
            cache_examples="lazy"
        )

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn = infer,
        inputs = [prompt, seed, randomize_seed, width, height, num_inference_steps],
        outputs = [result, seed]
    )

init()
demo.launch()