Spaces:
Runtime error
Runtime error
File size: 6,750 Bytes
8ccf632 ea02acf 8ccf632 1f688c5 81b26b5 3c6eab5 06f0278 8ccf632 f38676b 326965c f38676b 8ccf632 06f0278 8ccf632 f38676b 7d6f42b f38676b 3c6eab5 f38676b 7d6f42b b3dbc86 f38676b 7d6f42b b3dbc86 7eb2f5e f38676b f5d52fb f38676b 4669ef8 f5d52fb f38676b ea02acf 8ccf632 f38676b 54192f0 8ccf632 06f0278 8ccf632 06f0278 8ccf632 e2944a6 8ccf632 6ebb7df 73e25cc 8ccf632 0a779d1 8ccf632 2b62414 8ccf632 4669ef8 1f688c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
import gradio as gr
import numpy as np
import random
#import spaces
import torch
import devicetorch
from diffusers import DiffusionPipeline
import os
# Quant
from optimum.quanto import freeze, qfloat8, quantize
from diffusers import FlowMatchEulerDiscreteScheduler, AutoencoderKL
from diffusers.models.transformers.transformer_flux import FluxTransformer2DModel
from diffusers.pipelines.flux.pipeline_flux import FluxPipeline
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
DEVICE = devicetorch.get(torch)
#if device == "cuda":
# dtype = torch.bfloat16
#elif device == "mps":
# dtype = torch.float16
#else:
# dtype = torch.float32
##dtype = torch.bfloat16
##device = "cuda" if torch.cuda.is_available() else "cpu"
#
##pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16, revision="refs/pr/1").to(device)
#pipe = DiffusionPipeline.from_pretrained("cocktailpeanut/xulf-s", torch_dtype=dtype).to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
def init():
global pipe
dtype = torch.bfloat16
# schnell is the distilled turbo model. For the CFG distilled model, use:
# bfl_repo = "black-forest-labs/FLUX.1-dev"
# revision = "refs/pr/3"
#
# The undistilled model that uses CFG ("pro") which can use negative prompts
# was not released.
bfl_repo = "cocktailpeanut/xulf-s"
te_repo = "comfyanonymous/flux_text_encoders"
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(bfl_repo, subfolder="scheduler")
#text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=dtype)
text_encoder = CLIPTextModel.from_pretrained(os.path.join(os.getcwd(), "flux_text_encoders/clip_l.safetensors"), torch_dtype=dtype)
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=dtype)
#text_encoder_2 = T5EncoderModel.from_pretrained(bfl_repo, subfolder="text_encoder_2", torch_dtype=dtype)
text_encoder_2 = T5EncoderModel.from_pretrained(os.path.join(os.getcwd(), "flux_text_encoders/t5xxl_fp8_e4m3fn.safetensors"), torch_dtype=dtype)
tokenizer_2 = T5TokenizerFast.from_pretrained(bfl_repo, subfolder="tokenizer_2", torch_dtype=dtype)
vae = AutoencoderKL.from_pretrained(bfl_repo, subfolder="vae", torch_dtype=dtype)
transformer = FluxTransformer2DModel.from_pretrained(bfl_repo, subfolder="transformer", torch_dtype=dtype)
# Experimental: Try this to load in 4-bit for <16GB cards.
#
# from optimum.quanto import qint4
# quantize(transformer, weights=qint4, exclude=["proj_out", "x_embedder", "norm_out", "context_embedder"])
# freeze(transformer)
quantize(transformer, weights=qfloat8)
freeze(transformer)
quantize(text_encoder_2, weights=qfloat8)
freeze(text_encoder_2)
pipe = FluxPipeline(
scheduler=scheduler,
text_encoder=text_encoder,
tokenizer=tokenizer,
text_encoder_2=None,
tokenizer_2=tokenizer_2,
vae=vae,
transformer=None,
)
pipe.text_encoder_2 = text_encoder_2
pipe.transformer = transformer
if DEVICE == "cuda":
pipe.enable_model_cpu_offload()
pipe.to(DEVICE)
# generator = torch.Generator().manual_seed(12345)
# image = pipe(
# prompt='nekomusume cat girl, digital painting',
# width=1024,
# height=1024,
# num_inference_steps=4,
# generator=generator,
# guidance_scale=3.5,
# ).images[0]
#@spaces.GPU()
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
global pipe
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt = prompt,
width = width,
height = height,
num_inference_steps = num_inference_steps,
generator = generator,
guidance_scale=0.0
).images[0]
return image, seed
examples = [
"a tiny astronaut hatching from an egg on the moon",
"a cat holding a sign that says hello world",
"an anime illustration of a wiener schnitzel",
]
css="""
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""# FLUX.1 [schnell]
12B param rectified flow transformer distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) for 4 step generation
[[blog](https://blackforestlabs.ai/2024/07/31/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-schnell)]
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=4,
)
gr.Examples(
examples = examples,
fn = infer,
inputs = [prompt],
outputs = [result, seed],
cache_examples="lazy"
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn = infer,
inputs = [prompt, seed, randomize_seed, width, height, num_inference_steps],
outputs = [result, seed]
)
init()
demo.launch()
|