Spaces:
Running
Running
File size: 15,012 Bytes
5d9796e 1f6e4a8 5d9796e 1f6e4a8 5d9796e 8cfcc1c 5d9796e 1f6e4a8 5d9796e 1f6e4a8 5d9796e 1f6e4a8 5d9796e 8cfcc1c a6ef7ad 1f6e4a8 5d9796e 8cfcc1c a6ef7ad 8cfcc1c 5d9796e 1f6e4a8 5d9796e 90ad424 5d9796e 1f6e4a8 5d9796e 1f6e4a8 5d9796e 1f6e4a8 8cfcc1c 380e6c3 8cfcc1c 380e6c3 8cfcc1c a6ef7ad 8cfcc1c a6ef7ad 8cfcc1c 5d9796e a6ef7ad 1f6e4a8 a6ef7ad 1f6e4a8 5d9796e 1f6e4a8 5d9796e 1f6e4a8 5d9796e 8cfcc1c 1f6e4a8 a6ef7ad 1f6e4a8 8cfcc1c a6ef7ad 8cfcc1c a6ef7ad 1f6e4a8 8cfcc1c a6ef7ad 8cfcc1c 1f6e4a8 8cfcc1c 380e6c3 8cfcc1c 380e6c3 8cfcc1c a6ef7ad 8cfcc1c a6ef7ad 8cfcc1c 380e6c3 a6ef7ad 380e6c3 8cfcc1c a6ef7ad 8cfcc1c 1f6e4a8 380e6c3 1f6e4a8 380e6c3 a6ef7ad 380e6c3 a6ef7ad 380e6c3 a6ef7ad 380e6c3 1f6e4a8 380e6c3 a6ef7ad 380e6c3 a6ef7ad 380e6c3 a6ef7ad 380e6c3 1f6e4a8 a6ef7ad 8cfcc1c a6ef7ad b01dd01 a6ef7ad 8cfcc1c 1f6e4a8 a6ef7ad 1f6e4a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 |
import gradio as gr
import torch
from viscy.light.engine import VSUNet
from huggingface_hub import hf_hub_download
from numpy.typing import ArrayLike
import numpy as np
from skimage import exposure
from skimage.transform import resize
from skimage.util import invert
import cmap
class VSGradio:
def __init__(self, model_config, model_ckpt_path):
self.model_config = model_config
self.model_ckpt_path = model_ckpt_path
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.model = None
self.load_model()
def load_model(self):
# Load the model checkpoint and move it to the correct device (GPU or CPU)
self.model = VSUNet.load_from_checkpoint(
self.model_ckpt_path,
architecture="UNeXt2_2D",
model_config=self.model_config,
)
self.model.to(self.device) # Move the model to the correct device (GPU/CPU)
self.model.eval()
def normalize_fov(self, input: ArrayLike):
"Normalizing the fov with zero mean and unit variance"
mean = np.mean(input)
std = np.std(input)
return (input - mean) / std
def preprocess_image_standard(self, input: ArrayLike):
# Perform standard preprocessing here
input = exposure.equalize_adapthist(input)
return input
def downscale_image(self, inp: ArrayLike, scale_factor: float):
"""Downscales the image by the given scaling factor"""
height, width = inp.shape
new_height = int(height * scale_factor)
new_width = int(width * scale_factor)
return resize(inp, (new_height, new_width), anti_aliasing=True)
def predict(self, inp, scaling_factor: float):
# Normalize the input and convert to tensor
inp = self.normalize_fov(inp)
original_shape = inp.shape
# Resize the input image to the expected cell diameter
inp = apply_rescale_image(inp, scaling_factor)
# Convert the input to a tensor
inp = torch.from_numpy(np.array(inp).astype(np.float32))
# Prepare the input dictionary and move input to the correct device (GPU or CPU)
test_dict = dict(
index=None,
source=inp.unsqueeze(0).unsqueeze(0).unsqueeze(0).to(self.device),
)
# Run model inference
with torch.inference_mode():
self.model.on_predict_start() # Necessary preprocessing for the model
pred = (
self.model.predict_step(test_dict, 0, 0).cpu().numpy()
) # Move output back to CPU for post-processing
# Post-process the model output and rescale intensity
nuc_pred = pred[0, 0, 0]
mem_pred = pred[0, 1, 0]
# Resize predictions back to the original image size
nuc_pred = resize(nuc_pred, original_shape, anti_aliasing=True)
mem_pred = resize(mem_pred, original_shape, anti_aliasing=True)
# Define colormaps
green_colormap = cmap.Colormap("green") # Nucleus: black to green
magenta_colormap = cmap.Colormap("magenta")
# Apply the colormap to the predictions
nuc_rgb = apply_colormap(nuc_pred, green_colormap)
mem_rgb = apply_colormap(mem_pred, magenta_colormap)
return nuc_rgb, mem_rgb # Return both nucleus and membrane images
def apply_colormap(prediction, colormap: cmap.Colormap):
"""Apply a colormap to a single-channel prediction image."""
# Ensure the prediction is within the valid range [0, 1]
prediction = exposure.rescale_intensity(prediction, out_range=(0, 1))
# Apply the colormap to get an RGB image
rgb_image = colormap(prediction)
# Convert the output from [0, 1] to [0, 255] for display
rgb_image_uint8 = (rgb_image * 255).astype(np.uint8)
return rgb_image_uint8
def merge_images(nuc_rgb: ArrayLike, mem_rgb: ArrayLike) -> ArrayLike:
"""Merge nucleus and membrane images into a single RGB image."""
return np.maximum(nuc_rgb, mem_rgb)
def apply_image_adjustments(image, invert_image: bool, gamma_factor: float):
"""Applies all the image adjustments (invert, contrast, gamma) in sequence"""
# Apply invert
if invert_image:
image = invert(image, signed_float=False)
# Apply gamma adjustment
image = exposure.adjust_gamma(image, gamma_factor)
return exposure.rescale_intensity(image, out_range=(0, 255)).astype(np.uint8)
def apply_rescale_image(image, scaling_factor: float):
"""Resize the input image according to the scaling factor"""
scaling_factor = float(scaling_factor)
image = resize(
image,
(int(image.shape[0] * scaling_factor), int(image.shape[1] * scaling_factor)),
anti_aliasing=True,
)
return image
# Function to clear outputs when a new image is uploaded
def clear_outputs(image):
return (
image,
None,
None,
) # Return None for adjusted_image, output_nucleus, and output_membrane
def load_css(file_path):
"""Load custom CSS"""
with open(file_path, "r") as file:
return file.read()
if __name__ == "__main__":
# Download the model checkpoint from Hugging Face
model_ckpt_path = hf_hub_download(
repo_id="compmicro-czb/VSCyto2D", filename="epoch=399-step=23200.ckpt"
)
# Model configuration
model_config = {
"in_channels": 1,
"out_channels": 2,
"encoder_blocks": [3, 3, 9, 3],
"dims": [96, 192, 384, 768],
"decoder_conv_blocks": 2,
"stem_kernel_size": [1, 2, 2],
"in_stack_depth": 1,
"pretraining": False,
}
vsgradio = VSGradio(model_config, model_ckpt_path)
# Initialize the Gradio app using Blocks
with gr.Blocks(css=load_css("style.css")) as demo:
# Title and description
gr.HTML(
"""
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
<a href="https://www.czbiohub.org/sf/" target="_blank">
<img src="https://huggingface.co/spaces/compmicro-czb/VirtualStaining/resolve/main/misc/czb_mark.png" style="width: 100px; height: auto; margin-right: 10px;">
</a>
<div class='title-block'>Image Translation (Virtual Staining) of cellular landmark organelles</div>
</div>
"""
)
gr.HTML(
"""
<div class='description-block'>
<p><b>Model:</b> VSCyto2D</p>
<p><b>Input:</b> label-free image (e.g., QPI or phase contrast).</p>
<p><b>Output:</b> Virtual staining of nucleus and membrane.</p>
<p><b>Note:</b> The model works well with QPI, and sometimes generalizes to phase contrast and DIC.<br>
It was trained primarily on HEK293T, BJ5, and A549 cells imaged at 20x. <br>
We continue to diagnose and improve generalization<p>
<p>Check out our preprint: <a href='https://www.biorxiv.org/content/10.1101/2024.05.31.596901' target='_blank'><i>Liu et al., Robust virtual staining of landmark organelles</i></a></p>
<p> For training your own model and analyzing large amounts of data, use our <a href='https://github.com/mehta-lab/VisCy/tree/main/examples/virtual_staining/dlmbl_exercise' target='_blank'>GitHub repository</a>.</p>
</div>
"""
)
# Layout for input and output images
with gr.Row():
input_image = gr.Image(type="numpy", image_mode="L", label="Upload Image")
adjusted_image = gr.Image(
type="numpy",
image_mode="L",
label="Adjusted Image (Preview)",
interactive=False,
)
with gr.Column():
output_nucleus = gr.Image(
type="numpy", image_mode="RGB", label="VS Nucleus"
)
output_membrane = gr.Image(
type="numpy", image_mode="RGB", label="VS Membrane"
)
merged_image = gr.Image(
type="numpy", image_mode="RGB", label="Merged Image", visible=False
)
# Checkbox for applying invert
preprocess_invert = gr.Checkbox(label="Invert Image", value=False)
# Slider for gamma adjustment
gamma_factor = gr.Slider(
label="Adjust Gamma", minimum=0.01, maximum=5.0, value=1.0, step=0.1
)
# Input field for the cell diameter in microns
scaling_factor = gr.Textbox(
label="Rescaling image factor",
value="1.0",
placeholder="Rescaling factor for the input image",
)
# Checkbox for merging predictions
merge_checkbox = gr.Checkbox(
label="Merge Predictions into one image", value=True
)
input_image.change(
fn=apply_image_adjustments,
inputs=[input_image, preprocess_invert, gamma_factor],
outputs=adjusted_image,
)
gamma_factor.change(
fn=apply_image_adjustments,
inputs=[input_image, preprocess_invert, gamma_factor],
outputs=adjusted_image,
)
cell_name = gr.Textbox(
label="Cell Name", placeholder="Cell Type", visible=False
)
imaging_modality = gr.Textbox(
label="Imaging Modality", placeholder="Imaging Modality", visible=False
)
references = gr.Textbox(
label="References", placeholder="References", visible=False
)
preprocess_invert.change(
fn=apply_image_adjustments,
inputs=[input_image, preprocess_invert, gamma_factor],
outputs=adjusted_image,
)
# Button to trigger prediction and update the output images
submit_button = gr.Button("Submit")
# Function to handle prediction and merging if needed
def submit_and_merge(inp, scaling_factor, merge):
nucleus, membrane = vsgradio.predict(inp, scaling_factor)
if merge:
merged = merge_images(nucleus, membrane)
return (
merged,
gr.update(visible=True),
nucleus,
gr.update(visible=False),
membrane,
gr.update(visible=False),
)
else:
return (
None,
gr.update(visible=False),
nucleus,
gr.update(visible=True),
membrane,
gr.update(visible=True),
)
submit_button.click(
fn=submit_and_merge,
inputs=[adjusted_image, scaling_factor, merge_checkbox],
outputs=[
merged_image,
merged_image,
output_nucleus,
output_nucleus,
output_membrane,
output_membrane,
],
)
# Clear everything when the input image changes
input_image.change(
fn=clear_outputs,
inputs=input_image,
outputs=[adjusted_image, output_nucleus, output_membrane],
)
# Function to handle merging the two predictions after they are shown
def merge_predictions_fn(nucleus_image, membrane_image, merge):
if merge:
merged = merge_images(nucleus_image, membrane_image)
return (
merged,
gr.update(visible=True),
gr.update(visible=False),
gr.update(visible=False),
)
else:
return (
None,
gr.update(visible=False),
gr.update(visible=True),
gr.update(visible=True),
)
# Toggle between merged and separate views when the checkbox is checked
merge_checkbox.change(
fn=merge_predictions_fn,
inputs=[output_nucleus, output_membrane, merge_checkbox],
outputs=[merged_image, merged_image, output_nucleus, output_membrane],
)
# Example images and article
examples_component = gr.Examples(
examples=[
["examples/a549.png", "A549", "QPI", 1.0, False, "1.0", "1"],
["examples/hek.png", "HEK293T", "QPI", 1.0, False, "1.0", "1"],
["examples/HEK_PhC.png", "HEK293T", "PhC", 1.2, True, "1.0", "1"],
["examples/livecell_A172.png", "A172", "PhC", 1.0, True, "1.0", "2"],
["examples/ctc_HeLa.png", "HeLa", "DIC", 0.7, False, "0.7", "3"],
[
"examples/ctc_glioblastoma_astrocytoma_U373.png",
"Glioblastoma",
"PhC",
1.0,
True,
"2.0",
"3",
],
["examples/U2OS_BF.png", "U2OS", "Brightfield", 1.0, False, "0.3", "4"],
["examples/U2OS_QPI.png", "U2OS", "QPI", 1.0, False, "0.3", "4"],
[
"examples/neuromast2.png",
"Zebrafish neuromast",
"QPI",
0.6,
False,
"1.2",
"1",
],
[
"examples/mousekidney.png",
"Mouse Kidney",
"QPI",
0.8,
False,
"0.6",
"4",
],
],
inputs=[
input_image,
cell_name,
imaging_modality,
gamma_factor,
preprocess_invert,
scaling_factor,
references,
],
)
# Article or footer information
gr.HTML(
"""
<div class='article-block'>
<li>1. <a href='https://www.biorxiv.org/content/10.1101/2024.05.31.596901' target='_blank'>Liu et al., Robust virtual staining of landmark organelles</a></li>
<li>2. <a href='https://sartorius-research.github.io/LIVECell/' target='_blank'>Edlund et. al. LIVECEll-A large-scale dataset for label-free live cell segmentation</a></li>
<li>3. <a href='https://celltrackingchallenge.net/' target='_blank'>Maska et. al.,The cell tracking challenge: 10 years of objective benchmarking </a></li>
<li>4. <a href='https://elifesciences.org/articles/55502' target='_blank'>Guo et. al., Revealing architectural order with quantitative label-free imaging and deep learning</a></li>
</div>
"""
)
# Launch the Gradio app
demo.launch()
|