Spaces:
Sleeping
Sleeping
File size: 1,813 Bytes
98985f3 b5dfd52 275100c 2789d18 275100c 2789d18 98985f3 b5dfd52 275100c 39599fb 92761a6 b67636b 275100c 60a0592 d357f15 98985f3 2789d18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
from transformers import AutoTokenizer
import gradio as gr
def load_tokenizers():
llama1_tokenizer = AutoTokenizer.from_pretrained("huggyllama/llama-7b")
llama2_tokenizer = AutoTokenizer.from_pretrained("TheBloke/Llama-2-7B-fp16")
mistral_tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1")
gpt2_tokenizer = AutoTokenizer.from_pretrained("gpt2")
gpt_neox_tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b")
falcon_tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-7b")
phi2_tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2")
t5_tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-xxl")
def tokenize(input_text):
llama1_tokens = llama1_tokenizer(input_text, add_special_tokens=True)["input_ids"]
llama2_tokens = llama2_tokenizer(input_text, add_special_tokens=True)["input_ids"]
mistral_tokens = mistral_tokenizer(input_text, add_special_tokens=True)["input_ids"]
gpt2_tokens = gpt2_tokenizer(input_text, add_special_tokens=True)["input_ids"]
gpt_neox_tokens = gpt_neox_tokenizer(input_text, add_special_tokens=True)["input_ids"]
falcon_tokens = falcon_tokenizer(input_text, add_special_tokens=True)["input_ids"]
phi2_tokens = phi2_tokenizer(input_text, add_special_tokens=True)["input_ids"]
t5_tokens = t5_tokenizer(input_text, add_special_tokens=True)["input_ids"]
return f"LLaMa-1: {len(llama1_tokens)}\nLLaMa-2: {len(llama2_tokens)}\nMistral: {len(mistral_tokens)}\nGPT-2/GPT-J: {len(gpt2_tokens)}\nGPT-NeoX: {len(gpt_neox_tokens)}\nFalcon: {len(falcon_tokens)}\nPhi-2: {len(phi2_tokens)}\nT5: {len(t5_tokens)}"
if __name__ == "__main__":
load_tokenizers()
iface = gr.Interface(fn=tokenize, inputs=gr.Textbox(lines=7), outputs="text")
iface.launch() |