Spaces:
Runtime error
Runtime error
conciomith
commited on
Commit
•
7974733
1
Parent(s):
66ca1ff
Upload retinaface_model.py
Browse files- retinaface_model.py +680 -0
retinaface_model.py
ADDED
@@ -0,0 +1,680 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tensorflow as tf
|
2 |
+
import gdown
|
3 |
+
from pathlib import Path
|
4 |
+
import os
|
5 |
+
|
6 |
+
tf_version = int(tf.__version__.split(".")[0])
|
7 |
+
|
8 |
+
if tf_version == 1:
|
9 |
+
from keras.models import Model
|
10 |
+
from keras.layers import Input, BatchNormalization, ZeroPadding2D, Conv2D, ReLU, MaxPool2D, Add, UpSampling2D, concatenate, Softmax
|
11 |
+
|
12 |
+
else:
|
13 |
+
from tensorflow.keras.models import Model
|
14 |
+
from tensorflow.keras.layers import Input, BatchNormalization, ZeroPadding2D, Conv2D, ReLU, MaxPool2D, Add, UpSampling2D, concatenate, Softmax
|
15 |
+
|
16 |
+
def load_weights(model):
|
17 |
+
|
18 |
+
home = str(Path.home())
|
19 |
+
exact_file = home+'/.deepface/weights/retinaface.h5'
|
20 |
+
#url = 'https://drive.google.com/file/d/1K3Eq2k1b9dpKkucZjPAiCCnNzfCMosK4'
|
21 |
+
#url = 'https://drive.google.com/uc?id=1K3Eq2k1b9dpKkucZjPAiCCnNzfCMosK4'
|
22 |
+
url = 'https://github.com/serengil/deepface_models/releases/download/v1.0/retinaface.h5'
|
23 |
+
|
24 |
+
#-----------------------------
|
25 |
+
|
26 |
+
if not os.path.exists(home+"/.deepface"):
|
27 |
+
os.mkdir(home+"/.deepface")
|
28 |
+
print("Directory ",home,"/.deepface created")
|
29 |
+
|
30 |
+
if not os.path.exists(home+"/.deepface/weights"):
|
31 |
+
os.mkdir(home+"/.deepface/weights")
|
32 |
+
print("Directory ",home,"/.deepface/weights created")
|
33 |
+
|
34 |
+
#-----------------------------
|
35 |
+
|
36 |
+
if os.path.isfile(exact_file) != True:
|
37 |
+
print("retinaface.h5 will be downloaded from the url "+url)
|
38 |
+
gdown.download(url, exact_file, quiet=False)
|
39 |
+
|
40 |
+
#-----------------------------
|
41 |
+
|
42 |
+
#gdown should download the pretrained weights here. If it does not still exist, then throw an exception.
|
43 |
+
if os.path.isfile(exact_file) != True:
|
44 |
+
raise ValueError("Pre-trained weight could not be loaded!"
|
45 |
+
+" You might try to download the pre-trained weights from the url "+ url
|
46 |
+
+ " and copy it to the ", exact_file, "manually.")
|
47 |
+
|
48 |
+
model.load_weights(exact_file)
|
49 |
+
|
50 |
+
return model
|
51 |
+
|
52 |
+
def build_model():
|
53 |
+
|
54 |
+
data = Input(dtype=tf.float32, shape=(None, None, 3), name='data')
|
55 |
+
|
56 |
+
bn_data = BatchNormalization(epsilon=1.9999999494757503e-05, name='bn_data', trainable=False)(data)
|
57 |
+
|
58 |
+
conv0_pad = ZeroPadding2D(padding=tuple([3, 3]))(bn_data)
|
59 |
+
|
60 |
+
conv0 = Conv2D(filters = 64, kernel_size = (7, 7), name = 'conv0', strides = [2, 2], padding = 'VALID', use_bias = False)(conv0_pad)
|
61 |
+
|
62 |
+
bn0 = BatchNormalization(epsilon=1.9999999494757503e-05, name='bn0', trainable=False)(conv0)
|
63 |
+
|
64 |
+
relu0 = ReLU(name='relu0')(bn0)
|
65 |
+
|
66 |
+
pooling0_pad = ZeroPadding2D(padding=tuple([1, 1]))(relu0)
|
67 |
+
|
68 |
+
pooling0 = MaxPool2D((3, 3), (2, 2), padding='VALID', name='pooling0')(pooling0_pad)
|
69 |
+
|
70 |
+
stage1_unit1_bn1 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage1_unit1_bn1', trainable=False)(pooling0)
|
71 |
+
|
72 |
+
stage1_unit1_relu1 = ReLU(name='stage1_unit1_relu1')(stage1_unit1_bn1)
|
73 |
+
|
74 |
+
stage1_unit1_conv1 = Conv2D(filters = 64, kernel_size = (1, 1), name = 'stage1_unit1_conv1', strides = [1, 1], padding = 'VALID', use_bias = False)(stage1_unit1_relu1)
|
75 |
+
|
76 |
+
stage1_unit1_sc = Conv2D(filters = 256, kernel_size = (1, 1), name = 'stage1_unit1_sc', strides = [1, 1], padding = 'VALID', use_bias = False)(stage1_unit1_relu1)
|
77 |
+
|
78 |
+
stage1_unit1_bn2 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage1_unit1_bn2', trainable=False)(stage1_unit1_conv1)
|
79 |
+
|
80 |
+
stage1_unit1_relu2 = ReLU(name='stage1_unit1_relu2')(stage1_unit1_bn2)
|
81 |
+
|
82 |
+
stage1_unit1_conv2_pad = ZeroPadding2D(padding=tuple([1, 1]))(stage1_unit1_relu2)
|
83 |
+
|
84 |
+
stage1_unit1_conv2 = Conv2D(filters = 64, kernel_size = (3, 3), name = 'stage1_unit1_conv2', strides = [1, 1], padding = 'VALID', use_bias = False)(stage1_unit1_conv2_pad)
|
85 |
+
|
86 |
+
stage1_unit1_bn3 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage1_unit1_bn3', trainable=False)(stage1_unit1_conv2)
|
87 |
+
|
88 |
+
stage1_unit1_relu3 = ReLU(name='stage1_unit1_relu3')(stage1_unit1_bn3)
|
89 |
+
|
90 |
+
stage1_unit1_conv3 = Conv2D(filters = 256, kernel_size = (1, 1), name = 'stage1_unit1_conv3', strides = [1, 1], padding = 'VALID', use_bias = False)(stage1_unit1_relu3)
|
91 |
+
|
92 |
+
plus0_v1 = Add()([stage1_unit1_conv3 , stage1_unit1_sc])
|
93 |
+
|
94 |
+
stage1_unit2_bn1 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage1_unit2_bn1', trainable=False)(plus0_v1)
|
95 |
+
|
96 |
+
stage1_unit2_relu1 = ReLU(name='stage1_unit2_relu1')(stage1_unit2_bn1)
|
97 |
+
|
98 |
+
stage1_unit2_conv1 = Conv2D(filters = 64, kernel_size = (1, 1), name = 'stage1_unit2_conv1', strides = [1, 1], padding = 'VALID', use_bias = False)(stage1_unit2_relu1)
|
99 |
+
|
100 |
+
stage1_unit2_bn2 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage1_unit2_bn2', trainable=False)(stage1_unit2_conv1)
|
101 |
+
|
102 |
+
stage1_unit2_relu2 = ReLU(name='stage1_unit2_relu2')(stage1_unit2_bn2)
|
103 |
+
|
104 |
+
stage1_unit2_conv2_pad = ZeroPadding2D(padding=tuple([1, 1]))(stage1_unit2_relu2)
|
105 |
+
|
106 |
+
stage1_unit2_conv2 = Conv2D(filters = 64, kernel_size = (3, 3), name = 'stage1_unit2_conv2', strides = [1, 1], padding = 'VALID', use_bias = False)(stage1_unit2_conv2_pad)
|
107 |
+
|
108 |
+
stage1_unit2_bn3 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage1_unit2_bn3', trainable=False)(stage1_unit2_conv2)
|
109 |
+
|
110 |
+
stage1_unit2_relu3 = ReLU(name='stage1_unit2_relu3')(stage1_unit2_bn3)
|
111 |
+
|
112 |
+
stage1_unit2_conv3 = Conv2D(filters = 256, kernel_size = (1, 1), name = 'stage1_unit2_conv3', strides = [1, 1], padding = 'VALID', use_bias = False)(stage1_unit2_relu3)
|
113 |
+
|
114 |
+
plus1_v2 = Add()([stage1_unit2_conv3 , plus0_v1])
|
115 |
+
|
116 |
+
stage1_unit3_bn1 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage1_unit3_bn1', trainable=False)(plus1_v2)
|
117 |
+
|
118 |
+
stage1_unit3_relu1 = ReLU(name='stage1_unit3_relu1')(stage1_unit3_bn1)
|
119 |
+
|
120 |
+
stage1_unit3_conv1 = Conv2D(filters = 64, kernel_size = (1, 1), name = 'stage1_unit3_conv1', strides = [1, 1], padding = 'VALID', use_bias = False)(stage1_unit3_relu1)
|
121 |
+
|
122 |
+
stage1_unit3_bn2 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage1_unit3_bn2', trainable=False)(stage1_unit3_conv1)
|
123 |
+
|
124 |
+
stage1_unit3_relu2 = ReLU(name='stage1_unit3_relu2')(stage1_unit3_bn2)
|
125 |
+
|
126 |
+
stage1_unit3_conv2_pad = ZeroPadding2D(padding=tuple([1, 1]))(stage1_unit3_relu2)
|
127 |
+
|
128 |
+
stage1_unit3_conv2 = Conv2D(filters = 64, kernel_size = (3, 3), name = 'stage1_unit3_conv2', strides = [1, 1], padding = 'VALID', use_bias = False)(stage1_unit3_conv2_pad)
|
129 |
+
|
130 |
+
stage1_unit3_bn3 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage1_unit3_bn3', trainable=False)(stage1_unit3_conv2)
|
131 |
+
|
132 |
+
stage1_unit3_relu3 = ReLU(name='stage1_unit3_relu3')(stage1_unit3_bn3)
|
133 |
+
|
134 |
+
stage1_unit3_conv3 = Conv2D(filters = 256, kernel_size = (1, 1), name = 'stage1_unit3_conv3', strides = [1, 1], padding = 'VALID', use_bias = False)(stage1_unit3_relu3)
|
135 |
+
|
136 |
+
plus2 = Add()([stage1_unit3_conv3 , plus1_v2])
|
137 |
+
|
138 |
+
stage2_unit1_bn1 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage2_unit1_bn1', trainable=False)(plus2)
|
139 |
+
|
140 |
+
stage2_unit1_relu1 = ReLU(name='stage2_unit1_relu1')(stage2_unit1_bn1)
|
141 |
+
|
142 |
+
stage2_unit1_conv1 = Conv2D(filters = 128, kernel_size = (1, 1), name = 'stage2_unit1_conv1', strides = [1, 1], padding = 'VALID', use_bias = False)(stage2_unit1_relu1)
|
143 |
+
|
144 |
+
stage2_unit1_sc = Conv2D(filters = 512, kernel_size = (1, 1), name = 'stage2_unit1_sc', strides = [2, 2], padding = 'VALID', use_bias = False)(stage2_unit1_relu1)
|
145 |
+
|
146 |
+
stage2_unit1_bn2 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage2_unit1_bn2', trainable=False)(stage2_unit1_conv1)
|
147 |
+
|
148 |
+
stage2_unit1_relu2 = ReLU(name='stage2_unit1_relu2')(stage2_unit1_bn2)
|
149 |
+
|
150 |
+
stage2_unit1_conv2_pad = ZeroPadding2D(padding=tuple([1, 1]))(stage2_unit1_relu2)
|
151 |
+
|
152 |
+
stage2_unit1_conv2 = Conv2D(filters = 128, kernel_size = (3, 3), name = 'stage2_unit1_conv2', strides = [2, 2], padding = 'VALID', use_bias = False)(stage2_unit1_conv2_pad)
|
153 |
+
|
154 |
+
stage2_unit1_bn3 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage2_unit1_bn3', trainable=False)(stage2_unit1_conv2)
|
155 |
+
|
156 |
+
stage2_unit1_relu3 = ReLU(name='stage2_unit1_relu3')(stage2_unit1_bn3)
|
157 |
+
|
158 |
+
stage2_unit1_conv3 = Conv2D(filters = 512, kernel_size = (1, 1), name = 'stage2_unit1_conv3', strides = [1, 1], padding = 'VALID', use_bias = False)(stage2_unit1_relu3)
|
159 |
+
|
160 |
+
plus3 = Add()([stage2_unit1_conv3 , stage2_unit1_sc])
|
161 |
+
|
162 |
+
stage2_unit2_bn1 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage2_unit2_bn1', trainable=False)(plus3)
|
163 |
+
|
164 |
+
stage2_unit2_relu1 = ReLU(name='stage2_unit2_relu1')(stage2_unit2_bn1)
|
165 |
+
|
166 |
+
stage2_unit2_conv1 = Conv2D(filters = 128, kernel_size = (1, 1), name = 'stage2_unit2_conv1', strides = [1, 1], padding = 'VALID', use_bias = False)(stage2_unit2_relu1)
|
167 |
+
|
168 |
+
stage2_unit2_bn2 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage2_unit2_bn2', trainable=False)(stage2_unit2_conv1)
|
169 |
+
|
170 |
+
stage2_unit2_relu2 = ReLU(name='stage2_unit2_relu2')(stage2_unit2_bn2)
|
171 |
+
|
172 |
+
stage2_unit2_conv2_pad = ZeroPadding2D(padding=tuple([1, 1]))(stage2_unit2_relu2)
|
173 |
+
|
174 |
+
stage2_unit2_conv2 = Conv2D(filters = 128, kernel_size = (3, 3), name = 'stage2_unit2_conv2', strides = [1, 1], padding = 'VALID', use_bias = False)(stage2_unit2_conv2_pad)
|
175 |
+
|
176 |
+
stage2_unit2_bn3 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage2_unit2_bn3', trainable=False)(stage2_unit2_conv2)
|
177 |
+
|
178 |
+
stage2_unit2_relu3 = ReLU(name='stage2_unit2_relu3')(stage2_unit2_bn3)
|
179 |
+
|
180 |
+
stage2_unit2_conv3 = Conv2D(filters = 512, kernel_size = (1, 1), name = 'stage2_unit2_conv3', strides = [1, 1], padding = 'VALID', use_bias = False)(stage2_unit2_relu3)
|
181 |
+
|
182 |
+
plus4 = Add()([stage2_unit2_conv3 , plus3])
|
183 |
+
|
184 |
+
stage2_unit3_bn1 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage2_unit3_bn1', trainable=False)(plus4)
|
185 |
+
|
186 |
+
stage2_unit3_relu1 = ReLU(name='stage2_unit3_relu1')(stage2_unit3_bn1)
|
187 |
+
|
188 |
+
stage2_unit3_conv1 = Conv2D(filters = 128, kernel_size = (1, 1), name = 'stage2_unit3_conv1', strides = [1, 1], padding = 'VALID', use_bias = False)(stage2_unit3_relu1)
|
189 |
+
|
190 |
+
stage2_unit3_bn2 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage2_unit3_bn2', trainable=False)(stage2_unit3_conv1)
|
191 |
+
|
192 |
+
stage2_unit3_relu2 = ReLU(name='stage2_unit3_relu2')(stage2_unit3_bn2)
|
193 |
+
|
194 |
+
stage2_unit3_conv2_pad = ZeroPadding2D(padding=tuple([1, 1]))(stage2_unit3_relu2)
|
195 |
+
|
196 |
+
stage2_unit3_conv2 = Conv2D(filters = 128, kernel_size = (3, 3), name = 'stage2_unit3_conv2', strides = [1, 1], padding = 'VALID', use_bias = False)(stage2_unit3_conv2_pad)
|
197 |
+
|
198 |
+
stage2_unit3_bn3 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage2_unit3_bn3', trainable=False)(stage2_unit3_conv2)
|
199 |
+
|
200 |
+
stage2_unit3_relu3 = ReLU(name='stage2_unit3_relu3')(stage2_unit3_bn3)
|
201 |
+
|
202 |
+
stage2_unit3_conv3 = Conv2D(filters = 512, kernel_size = (1, 1), name = 'stage2_unit3_conv3', strides = [1, 1], padding = 'VALID', use_bias = False)(stage2_unit3_relu3)
|
203 |
+
|
204 |
+
plus5 = Add()([stage2_unit3_conv3 , plus4])
|
205 |
+
|
206 |
+
stage2_unit4_bn1 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage2_unit4_bn1', trainable=False)(plus5)
|
207 |
+
|
208 |
+
stage2_unit4_relu1 = ReLU(name='stage2_unit4_relu1')(stage2_unit4_bn1)
|
209 |
+
|
210 |
+
stage2_unit4_conv1 = Conv2D(filters = 128, kernel_size = (1, 1), name = 'stage2_unit4_conv1', strides = [1, 1], padding = 'VALID', use_bias = False)(stage2_unit4_relu1)
|
211 |
+
|
212 |
+
stage2_unit4_bn2 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage2_unit4_bn2', trainable=False)(stage2_unit4_conv1)
|
213 |
+
|
214 |
+
stage2_unit4_relu2 = ReLU(name='stage2_unit4_relu2')(stage2_unit4_bn2)
|
215 |
+
|
216 |
+
stage2_unit4_conv2_pad = ZeroPadding2D(padding=tuple([1, 1]))(stage2_unit4_relu2)
|
217 |
+
|
218 |
+
stage2_unit4_conv2 = Conv2D(filters = 128, kernel_size = (3, 3), name = 'stage2_unit4_conv2', strides = [1, 1], padding = 'VALID', use_bias = False)(stage2_unit4_conv2_pad)
|
219 |
+
|
220 |
+
stage2_unit4_bn3 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage2_unit4_bn3', trainable=False)(stage2_unit4_conv2)
|
221 |
+
|
222 |
+
stage2_unit4_relu3 = ReLU(name='stage2_unit4_relu3')(stage2_unit4_bn3)
|
223 |
+
|
224 |
+
stage2_unit4_conv3 = Conv2D(filters = 512, kernel_size = (1, 1), name = 'stage2_unit4_conv3', strides = [1, 1], padding = 'VALID', use_bias = False)(stage2_unit4_relu3)
|
225 |
+
|
226 |
+
plus6 = Add()([stage2_unit4_conv3 , plus5])
|
227 |
+
|
228 |
+
stage3_unit1_bn1 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage3_unit1_bn1', trainable=False)(plus6)
|
229 |
+
|
230 |
+
stage3_unit1_relu1 = ReLU(name='stage3_unit1_relu1')(stage3_unit1_bn1)
|
231 |
+
|
232 |
+
stage3_unit1_conv1 = Conv2D(filters = 256, kernel_size = (1, 1), name = 'stage3_unit1_conv1', strides = [1, 1], padding = 'VALID', use_bias = False)(stage3_unit1_relu1)
|
233 |
+
|
234 |
+
stage3_unit1_sc = Conv2D(filters = 1024, kernel_size = (1, 1), name = 'stage3_unit1_sc', strides = [2, 2], padding = 'VALID', use_bias = False)(stage3_unit1_relu1)
|
235 |
+
|
236 |
+
stage3_unit1_bn2 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage3_unit1_bn2', trainable=False)(stage3_unit1_conv1)
|
237 |
+
|
238 |
+
stage3_unit1_relu2 = ReLU(name='stage3_unit1_relu2')(stage3_unit1_bn2)
|
239 |
+
|
240 |
+
stage3_unit1_conv2_pad = ZeroPadding2D(padding=tuple([1, 1]))(stage3_unit1_relu2)
|
241 |
+
|
242 |
+
stage3_unit1_conv2 = Conv2D(filters = 256, kernel_size = (3, 3), name = 'stage3_unit1_conv2', strides = [2, 2], padding = 'VALID', use_bias = False)(stage3_unit1_conv2_pad)
|
243 |
+
|
244 |
+
ssh_m1_red_conv = Conv2D(filters = 256, kernel_size = (1, 1), name = 'ssh_m1_red_conv', strides = [1, 1], padding = 'VALID', use_bias = True)(stage3_unit1_relu2)
|
245 |
+
|
246 |
+
stage3_unit1_bn3 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage3_unit1_bn3', trainable=False)(stage3_unit1_conv2)
|
247 |
+
|
248 |
+
ssh_m1_red_conv_bn = BatchNormalization(epsilon=1.9999999494757503e-05, name='ssh_m1_red_conv_bn', trainable=False)(ssh_m1_red_conv)
|
249 |
+
|
250 |
+
stage3_unit1_relu3 = ReLU(name='stage3_unit1_relu3')(stage3_unit1_bn3)
|
251 |
+
|
252 |
+
ssh_m1_red_conv_relu = ReLU(name='ssh_m1_red_conv_relu')(ssh_m1_red_conv_bn)
|
253 |
+
|
254 |
+
stage3_unit1_conv3 = Conv2D(filters = 1024, kernel_size = (1, 1), name = 'stage3_unit1_conv3', strides = [1, 1], padding = 'VALID', use_bias = False)(stage3_unit1_relu3)
|
255 |
+
|
256 |
+
plus7 = Add()([stage3_unit1_conv3 , stage3_unit1_sc])
|
257 |
+
|
258 |
+
stage3_unit2_bn1 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage3_unit2_bn1', trainable=False)(plus7)
|
259 |
+
|
260 |
+
stage3_unit2_relu1 = ReLU(name='stage3_unit2_relu1')(stage3_unit2_bn1)
|
261 |
+
|
262 |
+
stage3_unit2_conv1 = Conv2D(filters = 256, kernel_size = (1, 1), name = 'stage3_unit2_conv1', strides = [1, 1], padding = 'VALID', use_bias = False)(stage3_unit2_relu1)
|
263 |
+
|
264 |
+
stage3_unit2_bn2 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage3_unit2_bn2', trainable=False)(stage3_unit2_conv1)
|
265 |
+
|
266 |
+
stage3_unit2_relu2 = ReLU(name='stage3_unit2_relu2')(stage3_unit2_bn2)
|
267 |
+
|
268 |
+
stage3_unit2_conv2_pad = ZeroPadding2D(padding=tuple([1, 1]))(stage3_unit2_relu2)
|
269 |
+
|
270 |
+
stage3_unit2_conv2 = Conv2D(filters = 256, kernel_size = (3, 3), name = 'stage3_unit2_conv2', strides = [1, 1], padding = 'VALID', use_bias = False)(stage3_unit2_conv2_pad)
|
271 |
+
|
272 |
+
stage3_unit2_bn3 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage3_unit2_bn3', trainable=False)(stage3_unit2_conv2)
|
273 |
+
|
274 |
+
stage3_unit2_relu3 = ReLU(name='stage3_unit2_relu3')(stage3_unit2_bn3)
|
275 |
+
|
276 |
+
stage3_unit2_conv3 = Conv2D(filters = 1024, kernel_size = (1, 1), name = 'stage3_unit2_conv3', strides = [1, 1], padding = 'VALID', use_bias = False)(stage3_unit2_relu3)
|
277 |
+
|
278 |
+
plus8 = Add()([stage3_unit2_conv3 , plus7])
|
279 |
+
|
280 |
+
stage3_unit3_bn1 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage3_unit3_bn1', trainable=False)(plus8)
|
281 |
+
|
282 |
+
stage3_unit3_relu1 = ReLU(name='stage3_unit3_relu1')(stage3_unit3_bn1)
|
283 |
+
|
284 |
+
stage3_unit3_conv1 = Conv2D(filters = 256, kernel_size = (1, 1), name = 'stage3_unit3_conv1', strides = [1, 1], padding = 'VALID', use_bias = False)(stage3_unit3_relu1)
|
285 |
+
|
286 |
+
stage3_unit3_bn2 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage3_unit3_bn2', trainable=False)(stage3_unit3_conv1)
|
287 |
+
|
288 |
+
stage3_unit3_relu2 = ReLU(name='stage3_unit3_relu2')(stage3_unit3_bn2)
|
289 |
+
|
290 |
+
stage3_unit3_conv2_pad = ZeroPadding2D(padding=tuple([1, 1]))(stage3_unit3_relu2)
|
291 |
+
|
292 |
+
stage3_unit3_conv2 = Conv2D(filters = 256, kernel_size = (3, 3), name = 'stage3_unit3_conv2', strides = [1, 1], padding = 'VALID', use_bias = False)(stage3_unit3_conv2_pad)
|
293 |
+
|
294 |
+
stage3_unit3_bn3 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage3_unit3_bn3', trainable=False)(stage3_unit3_conv2)
|
295 |
+
|
296 |
+
stage3_unit3_relu3 = ReLU(name='stage3_unit3_relu3')(stage3_unit3_bn3)
|
297 |
+
|
298 |
+
stage3_unit3_conv3 = Conv2D(filters = 1024, kernel_size = (1, 1), name = 'stage3_unit3_conv3', strides = [1, 1], padding = 'VALID', use_bias = False)(stage3_unit3_relu3)
|
299 |
+
|
300 |
+
plus9 = Add()([stage3_unit3_conv3 , plus8])
|
301 |
+
|
302 |
+
stage3_unit4_bn1 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage3_unit4_bn1', trainable=False)(plus9)
|
303 |
+
|
304 |
+
stage3_unit4_relu1 = ReLU(name='stage3_unit4_relu1')(stage3_unit4_bn1)
|
305 |
+
|
306 |
+
stage3_unit4_conv1 = Conv2D(filters = 256, kernel_size = (1, 1), name = 'stage3_unit4_conv1', strides = [1, 1], padding = 'VALID', use_bias = False)(stage3_unit4_relu1)
|
307 |
+
|
308 |
+
stage3_unit4_bn2 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage3_unit4_bn2', trainable=False)(stage3_unit4_conv1)
|
309 |
+
|
310 |
+
stage3_unit4_relu2 = ReLU(name='stage3_unit4_relu2')(stage3_unit4_bn2)
|
311 |
+
|
312 |
+
stage3_unit4_conv2_pad = ZeroPadding2D(padding=tuple([1, 1]))(stage3_unit4_relu2)
|
313 |
+
|
314 |
+
stage3_unit4_conv2 = Conv2D(filters = 256, kernel_size = (3, 3), name = 'stage3_unit4_conv2', strides = [1, 1], padding = 'VALID', use_bias = False)(stage3_unit4_conv2_pad)
|
315 |
+
|
316 |
+
stage3_unit4_bn3 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage3_unit4_bn3', trainable=False)(stage3_unit4_conv2)
|
317 |
+
|
318 |
+
stage3_unit4_relu3 = ReLU(name='stage3_unit4_relu3')(stage3_unit4_bn3)
|
319 |
+
|
320 |
+
stage3_unit4_conv3 = Conv2D(filters = 1024, kernel_size = (1, 1), name = 'stage3_unit4_conv3', strides = [1, 1], padding = 'VALID', use_bias = False)(stage3_unit4_relu3)
|
321 |
+
|
322 |
+
plus10 = Add()([stage3_unit4_conv3 , plus9])
|
323 |
+
|
324 |
+
stage3_unit5_bn1 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage3_unit5_bn1', trainable=False)(plus10)
|
325 |
+
|
326 |
+
stage3_unit5_relu1 = ReLU(name='stage3_unit5_relu1')(stage3_unit5_bn1)
|
327 |
+
|
328 |
+
stage3_unit5_conv1 = Conv2D(filters = 256, kernel_size = (1, 1), name = 'stage3_unit5_conv1', strides = [1, 1], padding = 'VALID', use_bias = False)(stage3_unit5_relu1)
|
329 |
+
|
330 |
+
stage3_unit5_bn2 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage3_unit5_bn2', trainable=False)(stage3_unit5_conv1)
|
331 |
+
|
332 |
+
stage3_unit5_relu2 = ReLU(name='stage3_unit5_relu2')(stage3_unit5_bn2)
|
333 |
+
|
334 |
+
stage3_unit5_conv2_pad = ZeroPadding2D(padding=tuple([1, 1]))(stage3_unit5_relu2)
|
335 |
+
|
336 |
+
stage3_unit5_conv2 = Conv2D(filters = 256, kernel_size = (3, 3), name = 'stage3_unit5_conv2', strides = [1, 1], padding = 'VALID', use_bias = False)(stage3_unit5_conv2_pad)
|
337 |
+
|
338 |
+
stage3_unit5_bn3 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage3_unit5_bn3', trainable=False)(stage3_unit5_conv2)
|
339 |
+
|
340 |
+
stage3_unit5_relu3 = ReLU(name='stage3_unit5_relu3')(stage3_unit5_bn3)
|
341 |
+
|
342 |
+
stage3_unit5_conv3 = Conv2D(filters = 1024, kernel_size = (1, 1), name = 'stage3_unit5_conv3', strides = [1, 1], padding = 'VALID', use_bias = False)(stage3_unit5_relu3)
|
343 |
+
|
344 |
+
plus11 = Add()([stage3_unit5_conv3 , plus10])
|
345 |
+
|
346 |
+
stage3_unit6_bn1 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage3_unit6_bn1', trainable=False)(plus11)
|
347 |
+
|
348 |
+
stage3_unit6_relu1 = ReLU(name='stage3_unit6_relu1')(stage3_unit6_bn1)
|
349 |
+
|
350 |
+
stage3_unit6_conv1 = Conv2D(filters = 256, kernel_size = (1, 1), name = 'stage3_unit6_conv1', strides = [1, 1], padding = 'VALID', use_bias = False)(stage3_unit6_relu1)
|
351 |
+
|
352 |
+
stage3_unit6_bn2 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage3_unit6_bn2', trainable=False)(stage3_unit6_conv1)
|
353 |
+
|
354 |
+
stage3_unit6_relu2 = ReLU(name='stage3_unit6_relu2')(stage3_unit6_bn2)
|
355 |
+
|
356 |
+
stage3_unit6_conv2_pad = ZeroPadding2D(padding=tuple([1, 1]))(stage3_unit6_relu2)
|
357 |
+
|
358 |
+
stage3_unit6_conv2 = Conv2D(filters = 256, kernel_size = (3, 3), name = 'stage3_unit6_conv2', strides = [1, 1], padding = 'VALID', use_bias = False)(stage3_unit6_conv2_pad)
|
359 |
+
|
360 |
+
stage3_unit6_bn3 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage3_unit6_bn3', trainable=False)(stage3_unit6_conv2)
|
361 |
+
|
362 |
+
stage3_unit6_relu3 = ReLU(name='stage3_unit6_relu3')(stage3_unit6_bn3)
|
363 |
+
|
364 |
+
stage3_unit6_conv3 = Conv2D(filters = 1024, kernel_size = (1, 1), name = 'stage3_unit6_conv3', strides = [1, 1], padding = 'VALID', use_bias = False)(stage3_unit6_relu3)
|
365 |
+
|
366 |
+
plus12 = Add()([stage3_unit6_conv3 , plus11])
|
367 |
+
|
368 |
+
stage4_unit1_bn1 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage4_unit1_bn1', trainable=False)(plus12)
|
369 |
+
|
370 |
+
stage4_unit1_relu1 = ReLU(name='stage4_unit1_relu1')(stage4_unit1_bn1)
|
371 |
+
|
372 |
+
stage4_unit1_conv1 = Conv2D(filters = 512, kernel_size = (1, 1), name = 'stage4_unit1_conv1', strides = [1, 1], padding = 'VALID', use_bias = False)(stage4_unit1_relu1)
|
373 |
+
|
374 |
+
stage4_unit1_sc = Conv2D(filters = 2048, kernel_size = (1, 1), name = 'stage4_unit1_sc', strides = [2, 2], padding = 'VALID', use_bias = False)(stage4_unit1_relu1)
|
375 |
+
|
376 |
+
stage4_unit1_bn2 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage4_unit1_bn2', trainable=False)(stage4_unit1_conv1)
|
377 |
+
|
378 |
+
stage4_unit1_relu2 = ReLU(name='stage4_unit1_relu2')(stage4_unit1_bn2)
|
379 |
+
|
380 |
+
stage4_unit1_conv2_pad = ZeroPadding2D(padding=tuple([1, 1]))(stage4_unit1_relu2)
|
381 |
+
|
382 |
+
stage4_unit1_conv2 = Conv2D(filters = 512, kernel_size = (3, 3), name = 'stage4_unit1_conv2', strides = [2, 2], padding = 'VALID', use_bias = False)(stage4_unit1_conv2_pad)
|
383 |
+
|
384 |
+
ssh_c2_lateral = Conv2D(filters = 256, kernel_size = (1, 1), name = 'ssh_c2_lateral', strides = [1, 1], padding = 'VALID', use_bias = True)(stage4_unit1_relu2)
|
385 |
+
|
386 |
+
stage4_unit1_bn3 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage4_unit1_bn3', trainable=False)(stage4_unit1_conv2)
|
387 |
+
|
388 |
+
ssh_c2_lateral_bn = BatchNormalization(epsilon=1.9999999494757503e-05, name='ssh_c2_lateral_bn', trainable=False)(ssh_c2_lateral)
|
389 |
+
|
390 |
+
stage4_unit1_relu3 = ReLU(name='stage4_unit1_relu3')(stage4_unit1_bn3)
|
391 |
+
|
392 |
+
ssh_c2_lateral_relu = ReLU(name='ssh_c2_lateral_relu')(ssh_c2_lateral_bn)
|
393 |
+
|
394 |
+
stage4_unit1_conv3 = Conv2D(filters = 2048, kernel_size = (1, 1), name = 'stage4_unit1_conv3', strides = [1, 1], padding = 'VALID', use_bias = False)(stage4_unit1_relu3)
|
395 |
+
|
396 |
+
plus13 = Add()([stage4_unit1_conv3 , stage4_unit1_sc])
|
397 |
+
|
398 |
+
stage4_unit2_bn1 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage4_unit2_bn1', trainable=False)(plus13)
|
399 |
+
|
400 |
+
stage4_unit2_relu1 = ReLU(name='stage4_unit2_relu1')(stage4_unit2_bn1)
|
401 |
+
|
402 |
+
stage4_unit2_conv1 = Conv2D(filters = 512, kernel_size = (1, 1), name = 'stage4_unit2_conv1', strides = [1, 1], padding = 'VALID', use_bias = False)(stage4_unit2_relu1)
|
403 |
+
|
404 |
+
stage4_unit2_bn2 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage4_unit2_bn2', trainable=False)(stage4_unit2_conv1)
|
405 |
+
|
406 |
+
stage4_unit2_relu2 = ReLU(name='stage4_unit2_relu2')(stage4_unit2_bn2)
|
407 |
+
|
408 |
+
stage4_unit2_conv2_pad = ZeroPadding2D(padding=tuple([1, 1]))(stage4_unit2_relu2)
|
409 |
+
|
410 |
+
stage4_unit2_conv2 = Conv2D(filters = 512, kernel_size = (3, 3), name = 'stage4_unit2_conv2', strides = [1, 1], padding = 'VALID', use_bias = False)(stage4_unit2_conv2_pad)
|
411 |
+
|
412 |
+
stage4_unit2_bn3 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage4_unit2_bn3', trainable=False)(stage4_unit2_conv2)
|
413 |
+
|
414 |
+
stage4_unit2_relu3 = ReLU(name='stage4_unit2_relu3')(stage4_unit2_bn3)
|
415 |
+
|
416 |
+
stage4_unit2_conv3 = Conv2D(filters = 2048, kernel_size = (1, 1), name = 'stage4_unit2_conv3', strides = [1, 1], padding = 'VALID', use_bias = False)(stage4_unit2_relu3)
|
417 |
+
|
418 |
+
plus14 = Add()([stage4_unit2_conv3 , plus13])
|
419 |
+
|
420 |
+
stage4_unit3_bn1 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage4_unit3_bn1', trainable=False)(plus14)
|
421 |
+
|
422 |
+
stage4_unit3_relu1 = ReLU(name='stage4_unit3_relu1')(stage4_unit3_bn1)
|
423 |
+
|
424 |
+
stage4_unit3_conv1 = Conv2D(filters = 512, kernel_size = (1, 1), name = 'stage4_unit3_conv1', strides = [1, 1], padding = 'VALID', use_bias = False)(stage4_unit3_relu1)
|
425 |
+
|
426 |
+
stage4_unit3_bn2 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage4_unit3_bn2', trainable=False)(stage4_unit3_conv1)
|
427 |
+
|
428 |
+
stage4_unit3_relu2 = ReLU(name='stage4_unit3_relu2')(stage4_unit3_bn2)
|
429 |
+
|
430 |
+
stage4_unit3_conv2_pad = ZeroPadding2D(padding=tuple([1, 1]))(stage4_unit3_relu2)
|
431 |
+
|
432 |
+
stage4_unit3_conv2 = Conv2D(filters = 512, kernel_size = (3, 3), name = 'stage4_unit3_conv2', strides = [1, 1], padding = 'VALID', use_bias = False)(stage4_unit3_conv2_pad)
|
433 |
+
|
434 |
+
stage4_unit3_bn3 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage4_unit3_bn3', trainable=False)(stage4_unit3_conv2)
|
435 |
+
|
436 |
+
stage4_unit3_relu3 = ReLU(name='stage4_unit3_relu3')(stage4_unit3_bn3)
|
437 |
+
|
438 |
+
stage4_unit3_conv3 = Conv2D(filters = 2048, kernel_size = (1, 1), name = 'stage4_unit3_conv3', strides = [1, 1], padding = 'VALID', use_bias = False)(stage4_unit3_relu3)
|
439 |
+
|
440 |
+
plus15 = Add()([stage4_unit3_conv3 , plus14])
|
441 |
+
|
442 |
+
bn1 = BatchNormalization(epsilon=1.9999999494757503e-05, name='bn1', trainable=False)(plus15)
|
443 |
+
|
444 |
+
relu1 = ReLU(name='relu1')(bn1)
|
445 |
+
|
446 |
+
ssh_c3_lateral = Conv2D(filters = 256, kernel_size = (1, 1), name = 'ssh_c3_lateral', strides = [1, 1], padding = 'VALID', use_bias = True)(relu1)
|
447 |
+
|
448 |
+
ssh_c3_lateral_bn = BatchNormalization(epsilon=1.9999999494757503e-05, name='ssh_c3_lateral_bn', trainable=False)(ssh_c3_lateral)
|
449 |
+
|
450 |
+
ssh_c3_lateral_relu = ReLU(name='ssh_c3_lateral_relu')(ssh_c3_lateral_bn)
|
451 |
+
|
452 |
+
ssh_m3_det_conv1_pad = ZeroPadding2D(padding=tuple([1, 1]))(ssh_c3_lateral_relu)
|
453 |
+
|
454 |
+
ssh_m3_det_conv1 = Conv2D(filters = 256, kernel_size = (3, 3), name = 'ssh_m3_det_conv1', strides = [1, 1], padding = 'VALID', use_bias = True)(ssh_m3_det_conv1_pad)
|
455 |
+
|
456 |
+
ssh_m3_det_context_conv1_pad = ZeroPadding2D(padding=tuple([1, 1]))(ssh_c3_lateral_relu)
|
457 |
+
|
458 |
+
ssh_m3_det_context_conv1 = Conv2D(filters = 128, kernel_size = (3, 3), name = 'ssh_m3_det_context_conv1', strides = [1, 1], padding = 'VALID', use_bias = True)(ssh_m3_det_context_conv1_pad)
|
459 |
+
|
460 |
+
ssh_c3_up = UpSampling2D(size=(2, 2), interpolation="nearest", name="ssh_c3_up")(ssh_c3_lateral_relu)
|
461 |
+
|
462 |
+
ssh_m3_det_conv1_bn = BatchNormalization(epsilon=1.9999999494757503e-05, name='ssh_m3_det_conv1_bn', trainable=False)(ssh_m3_det_conv1)
|
463 |
+
|
464 |
+
ssh_m3_det_context_conv1_bn = BatchNormalization(epsilon=1.9999999494757503e-05, name='ssh_m3_det_context_conv1_bn', trainable=False)(ssh_m3_det_context_conv1)
|
465 |
+
|
466 |
+
x1_shape = tf.shape(ssh_c3_up)
|
467 |
+
x2_shape = tf.shape(ssh_c2_lateral_relu)
|
468 |
+
offsets = [0, (x1_shape[1] - x2_shape[1]) // 2, (x1_shape[2] - x2_shape[2]) // 2, 0]
|
469 |
+
size = [-1, x2_shape[1], x2_shape[2], -1]
|
470 |
+
crop0 = tf.slice(ssh_c3_up, offsets, size, "crop0")
|
471 |
+
|
472 |
+
ssh_m3_det_context_conv1_relu = ReLU(name='ssh_m3_det_context_conv1_relu')(ssh_m3_det_context_conv1_bn)
|
473 |
+
|
474 |
+
plus0_v2 = Add()([ssh_c2_lateral_relu , crop0])
|
475 |
+
|
476 |
+
ssh_m3_det_context_conv2_pad = ZeroPadding2D(padding=tuple([1, 1]))(ssh_m3_det_context_conv1_relu)
|
477 |
+
|
478 |
+
ssh_m3_det_context_conv2 = Conv2D(filters = 128, kernel_size = (3, 3), name = 'ssh_m3_det_context_conv2', strides = [1, 1], padding = 'VALID', use_bias = True)(ssh_m3_det_context_conv2_pad)
|
479 |
+
|
480 |
+
ssh_m3_det_context_conv3_1_pad = ZeroPadding2D(padding=tuple([1, 1]))(ssh_m3_det_context_conv1_relu)
|
481 |
+
|
482 |
+
ssh_m3_det_context_conv3_1 = Conv2D(filters = 128, kernel_size = (3, 3), name = 'ssh_m3_det_context_conv3_1', strides = [1, 1], padding = 'VALID', use_bias = True)(ssh_m3_det_context_conv3_1_pad)
|
483 |
+
|
484 |
+
ssh_c2_aggr_pad = ZeroPadding2D(padding=tuple([1, 1]))(plus0_v2)
|
485 |
+
|
486 |
+
ssh_c2_aggr = Conv2D(filters = 256, kernel_size = (3, 3), name = 'ssh_c2_aggr', strides = [1, 1], padding = 'VALID', use_bias = True)(ssh_c2_aggr_pad)
|
487 |
+
|
488 |
+
ssh_m3_det_context_conv2_bn = BatchNormalization(epsilon=1.9999999494757503e-05, name='ssh_m3_det_context_conv2_bn', trainable=False)(ssh_m3_det_context_conv2)
|
489 |
+
|
490 |
+
ssh_m3_det_context_conv3_1_bn = BatchNormalization(epsilon=1.9999999494757503e-05, name='ssh_m3_det_context_conv3_1_bn', trainable=False)(ssh_m3_det_context_conv3_1)
|
491 |
+
|
492 |
+
ssh_c2_aggr_bn = BatchNormalization(epsilon=1.9999999494757503e-05, name='ssh_c2_aggr_bn', trainable=False)(ssh_c2_aggr)
|
493 |
+
|
494 |
+
ssh_m3_det_context_conv3_1_relu = ReLU(name='ssh_m3_det_context_conv3_1_relu')(ssh_m3_det_context_conv3_1_bn)
|
495 |
+
|
496 |
+
ssh_c2_aggr_relu = ReLU(name='ssh_c2_aggr_relu')(ssh_c2_aggr_bn)
|
497 |
+
|
498 |
+
ssh_m3_det_context_conv3_2_pad = ZeroPadding2D(padding=tuple([1, 1]))(ssh_m3_det_context_conv3_1_relu)
|
499 |
+
|
500 |
+
ssh_m3_det_context_conv3_2 = Conv2D(filters = 128, kernel_size = (3, 3), name = 'ssh_m3_det_context_conv3_2', strides = [1, 1], padding = 'VALID', use_bias = True)(ssh_m3_det_context_conv3_2_pad)
|
501 |
+
|
502 |
+
ssh_m2_det_conv1_pad = ZeroPadding2D(padding=tuple([1, 1]))(ssh_c2_aggr_relu)
|
503 |
+
|
504 |
+
ssh_m2_det_conv1 = Conv2D(filters = 256, kernel_size = (3, 3), name = 'ssh_m2_det_conv1', strides = [1, 1], padding = 'VALID', use_bias = True)(ssh_m2_det_conv1_pad)
|
505 |
+
|
506 |
+
ssh_m2_det_context_conv1_pad = ZeroPadding2D(padding=tuple([1, 1]))(ssh_c2_aggr_relu)
|
507 |
+
|
508 |
+
ssh_m2_det_context_conv1 = Conv2D(filters = 128, kernel_size = (3, 3), name = 'ssh_m2_det_context_conv1', strides = [1, 1], padding = 'VALID', use_bias = True)(ssh_m2_det_context_conv1_pad)
|
509 |
+
|
510 |
+
ssh_m2_red_up = UpSampling2D(size=(2, 2), interpolation="nearest", name="ssh_m2_red_up")(ssh_c2_aggr_relu)
|
511 |
+
|
512 |
+
ssh_m3_det_context_conv3_2_bn = BatchNormalization(epsilon=1.9999999494757503e-05, name='ssh_m3_det_context_conv3_2_bn', trainable=False)(ssh_m3_det_context_conv3_2)
|
513 |
+
|
514 |
+
ssh_m2_det_conv1_bn = BatchNormalization(epsilon=1.9999999494757503e-05, name='ssh_m2_det_conv1_bn', trainable=False)(ssh_m2_det_conv1)
|
515 |
+
|
516 |
+
ssh_m2_det_context_conv1_bn = BatchNormalization(epsilon=1.9999999494757503e-05, name='ssh_m2_det_context_conv1_bn', trainable=False)(ssh_m2_det_context_conv1)
|
517 |
+
|
518 |
+
x1_shape = tf.shape(ssh_m2_red_up)
|
519 |
+
x2_shape = tf.shape(ssh_m1_red_conv_relu)
|
520 |
+
offsets = [0, (x1_shape[1] - x2_shape[1]) // 2, (x1_shape[2] - x2_shape[2]) // 2, 0]
|
521 |
+
size = [-1, x2_shape[1], x2_shape[2], -1]
|
522 |
+
crop1 = tf.slice(ssh_m2_red_up, offsets, size, "crop1")
|
523 |
+
|
524 |
+
ssh_m3_det_concat = concatenate([ssh_m3_det_conv1_bn, ssh_m3_det_context_conv2_bn, ssh_m3_det_context_conv3_2_bn], 3, name='ssh_m3_det_concat')
|
525 |
+
|
526 |
+
ssh_m2_det_context_conv1_relu = ReLU(name='ssh_m2_det_context_conv1_relu')(ssh_m2_det_context_conv1_bn)
|
527 |
+
|
528 |
+
plus1_v1 = Add()([ssh_m1_red_conv_relu , crop1])
|
529 |
+
|
530 |
+
ssh_m3_det_concat_relu = ReLU(name='ssh_m3_det_concat_relu')(ssh_m3_det_concat)
|
531 |
+
|
532 |
+
ssh_m2_det_context_conv2_pad = ZeroPadding2D(padding=tuple([1, 1]))(ssh_m2_det_context_conv1_relu)
|
533 |
+
|
534 |
+
ssh_m2_det_context_conv2 = Conv2D(filters = 128, kernel_size = (3, 3), name = 'ssh_m2_det_context_conv2', strides = [1, 1], padding = 'VALID', use_bias = True)(ssh_m2_det_context_conv2_pad)
|
535 |
+
|
536 |
+
ssh_m2_det_context_conv3_1_pad = ZeroPadding2D(padding=tuple([1, 1]))(ssh_m2_det_context_conv1_relu)
|
537 |
+
|
538 |
+
ssh_m2_det_context_conv3_1 = Conv2D(filters = 128, kernel_size = (3, 3), name = 'ssh_m2_det_context_conv3_1', strides = [1, 1], padding = 'VALID', use_bias = True)(ssh_m2_det_context_conv3_1_pad)
|
539 |
+
|
540 |
+
ssh_c1_aggr_pad = ZeroPadding2D(padding=tuple([1, 1]))(plus1_v1)
|
541 |
+
|
542 |
+
ssh_c1_aggr = Conv2D(filters = 256, kernel_size = (3, 3), name = 'ssh_c1_aggr', strides = [1, 1], padding = 'VALID', use_bias = True)(ssh_c1_aggr_pad)
|
543 |
+
|
544 |
+
face_rpn_cls_score_stride32 = Conv2D(filters = 4, kernel_size = (1, 1), name = 'face_rpn_cls_score_stride32', strides = [1, 1], padding = 'VALID', use_bias = True)(ssh_m3_det_concat_relu)
|
545 |
+
|
546 |
+
inter_1 = concatenate([face_rpn_cls_score_stride32[:, :, :, 0], face_rpn_cls_score_stride32[:, :, :, 1]], axis=1)
|
547 |
+
inter_2 = concatenate([face_rpn_cls_score_stride32[:, :, :, 2], face_rpn_cls_score_stride32[:, :, :, 3]], axis=1)
|
548 |
+
final = tf.stack([inter_1, inter_2])
|
549 |
+
face_rpn_cls_score_reshape_stride32 = tf.transpose(final, (1, 2, 3, 0), name="face_rpn_cls_score_reshape_stride32")
|
550 |
+
|
551 |
+
face_rpn_bbox_pred_stride32 = Conv2D(filters = 8, kernel_size = (1, 1), name = 'face_rpn_bbox_pred_stride32', strides = [1, 1], padding = 'VALID', use_bias = True)(ssh_m3_det_concat_relu)
|
552 |
+
|
553 |
+
face_rpn_landmark_pred_stride32 = Conv2D(filters = 20, kernel_size = (1, 1), name = 'face_rpn_landmark_pred_stride32', strides = [1, 1], padding = 'VALID', use_bias = True)(ssh_m3_det_concat_relu)
|
554 |
+
|
555 |
+
ssh_m2_det_context_conv2_bn = BatchNormalization(epsilon=1.9999999494757503e-05, name='ssh_m2_det_context_conv2_bn', trainable=False)(ssh_m2_det_context_conv2)
|
556 |
+
|
557 |
+
ssh_m2_det_context_conv3_1_bn = BatchNormalization(epsilon=1.9999999494757503e-05, name='ssh_m2_det_context_conv3_1_bn', trainable=False)(ssh_m2_det_context_conv3_1)
|
558 |
+
|
559 |
+
ssh_c1_aggr_bn = BatchNormalization(epsilon=1.9999999494757503e-05, name='ssh_c1_aggr_bn', trainable=False)(ssh_c1_aggr)
|
560 |
+
|
561 |
+
ssh_m2_det_context_conv3_1_relu = ReLU(name='ssh_m2_det_context_conv3_1_relu')(ssh_m2_det_context_conv3_1_bn)
|
562 |
+
|
563 |
+
ssh_c1_aggr_relu = ReLU(name='ssh_c1_aggr_relu')(ssh_c1_aggr_bn)
|
564 |
+
|
565 |
+
face_rpn_cls_prob_stride32 = Softmax(name = 'face_rpn_cls_prob_stride32')(face_rpn_cls_score_reshape_stride32)
|
566 |
+
|
567 |
+
input_shape = [tf.shape(face_rpn_cls_prob_stride32)[k] for k in range(4)]
|
568 |
+
sz = tf.dtypes.cast(input_shape[1] / 2, dtype=tf.int32)
|
569 |
+
inter_1 = face_rpn_cls_prob_stride32[:, 0:sz, :, 0]
|
570 |
+
inter_2 = face_rpn_cls_prob_stride32[:, 0:sz, :, 1]
|
571 |
+
inter_3 = face_rpn_cls_prob_stride32[:, sz:, :, 0]
|
572 |
+
inter_4 = face_rpn_cls_prob_stride32[:, sz:, :, 1]
|
573 |
+
final = tf.stack([inter_1, inter_3, inter_2, inter_4])
|
574 |
+
face_rpn_cls_prob_reshape_stride32 = tf.transpose(final, (1, 2, 3, 0), name="face_rpn_cls_prob_reshape_stride32")
|
575 |
+
|
576 |
+
ssh_m2_det_context_conv3_2_pad = ZeroPadding2D(padding=tuple([1, 1]))(ssh_m2_det_context_conv3_1_relu)
|
577 |
+
|
578 |
+
ssh_m2_det_context_conv3_2 = Conv2D(filters = 128, kernel_size = (3, 3), name = 'ssh_m2_det_context_conv3_2', strides = [1, 1], padding = 'VALID', use_bias = True)(ssh_m2_det_context_conv3_2_pad)
|
579 |
+
|
580 |
+
ssh_m1_det_conv1_pad = ZeroPadding2D(padding=tuple([1, 1]))(ssh_c1_aggr_relu)
|
581 |
+
|
582 |
+
ssh_m1_det_conv1 = Conv2D(filters = 256, kernel_size = (3, 3), name = 'ssh_m1_det_conv1', strides = [1, 1], padding = 'VALID', use_bias = True)(ssh_m1_det_conv1_pad)
|
583 |
+
|
584 |
+
ssh_m1_det_context_conv1_pad = ZeroPadding2D(padding=tuple([1, 1]))(ssh_c1_aggr_relu)
|
585 |
+
|
586 |
+
ssh_m1_det_context_conv1 = Conv2D(filters = 128, kernel_size = (3, 3), name = 'ssh_m1_det_context_conv1', strides = [1, 1], padding = 'VALID', use_bias = True)(ssh_m1_det_context_conv1_pad)
|
587 |
+
|
588 |
+
ssh_m2_det_context_conv3_2_bn = BatchNormalization(epsilon=1.9999999494757503e-05, name='ssh_m2_det_context_conv3_2_bn', trainable=False)(ssh_m2_det_context_conv3_2)
|
589 |
+
|
590 |
+
ssh_m1_det_conv1_bn = BatchNormalization(epsilon=1.9999999494757503e-05, name='ssh_m1_det_conv1_bn', trainable=False)(ssh_m1_det_conv1)
|
591 |
+
|
592 |
+
ssh_m1_det_context_conv1_bn = BatchNormalization(epsilon=1.9999999494757503e-05, name='ssh_m1_det_context_conv1_bn', trainable=False)(ssh_m1_det_context_conv1)
|
593 |
+
|
594 |
+
ssh_m2_det_concat = concatenate([ssh_m2_det_conv1_bn, ssh_m2_det_context_conv2_bn, ssh_m2_det_context_conv3_2_bn], 3, name='ssh_m2_det_concat')
|
595 |
+
|
596 |
+
ssh_m1_det_context_conv1_relu = ReLU(name='ssh_m1_det_context_conv1_relu')(ssh_m1_det_context_conv1_bn)
|
597 |
+
|
598 |
+
ssh_m2_det_concat_relu = ReLU(name='ssh_m2_det_concat_relu')(ssh_m2_det_concat)
|
599 |
+
|
600 |
+
ssh_m1_det_context_conv2_pad = ZeroPadding2D(padding=tuple([1, 1]))(ssh_m1_det_context_conv1_relu)
|
601 |
+
|
602 |
+
ssh_m1_det_context_conv2 = Conv2D(filters = 128, kernel_size = (3, 3), name = 'ssh_m1_det_context_conv2', strides = [1, 1], padding = 'VALID', use_bias = True)(ssh_m1_det_context_conv2_pad)
|
603 |
+
|
604 |
+
ssh_m1_det_context_conv3_1_pad = ZeroPadding2D(padding=tuple([1, 1]))(ssh_m1_det_context_conv1_relu)
|
605 |
+
|
606 |
+
ssh_m1_det_context_conv3_1 = Conv2D(filters = 128, kernel_size = (3, 3), name = 'ssh_m1_det_context_conv3_1', strides = [1, 1], padding = 'VALID', use_bias = True)(ssh_m1_det_context_conv3_1_pad)
|
607 |
+
|
608 |
+
face_rpn_cls_score_stride16 = Conv2D(filters = 4, kernel_size = (1, 1), name = 'face_rpn_cls_score_stride16', strides = [1, 1], padding = 'VALID', use_bias = True)(ssh_m2_det_concat_relu)
|
609 |
+
|
610 |
+
inter_1 = concatenate([face_rpn_cls_score_stride16[:, :, :, 0], face_rpn_cls_score_stride16[:, :, :, 1]], axis=1)
|
611 |
+
inter_2 = concatenate([face_rpn_cls_score_stride16[:, :, :, 2], face_rpn_cls_score_stride16[:, :, :, 3]], axis=1)
|
612 |
+
final = tf.stack([inter_1, inter_2])
|
613 |
+
face_rpn_cls_score_reshape_stride16 = tf.transpose(final, (1, 2, 3, 0), name="face_rpn_cls_score_reshape_stride16")
|
614 |
+
|
615 |
+
face_rpn_bbox_pred_stride16 = Conv2D(filters = 8, kernel_size = (1, 1), name = 'face_rpn_bbox_pred_stride16', strides = [1, 1], padding = 'VALID', use_bias = True)(ssh_m2_det_concat_relu)
|
616 |
+
|
617 |
+
face_rpn_landmark_pred_stride16 = Conv2D(filters = 20, kernel_size = (1, 1), name = 'face_rpn_landmark_pred_stride16', strides = [1, 1], padding = 'VALID', use_bias = True)(ssh_m2_det_concat_relu)
|
618 |
+
|
619 |
+
ssh_m1_det_context_conv2_bn = BatchNormalization(epsilon=1.9999999494757503e-05, name='ssh_m1_det_context_conv2_bn', trainable=False)(ssh_m1_det_context_conv2)
|
620 |
+
|
621 |
+
ssh_m1_det_context_conv3_1_bn = BatchNormalization(epsilon=1.9999999494757503e-05, name='ssh_m1_det_context_conv3_1_bn', trainable=False)(ssh_m1_det_context_conv3_1)
|
622 |
+
|
623 |
+
ssh_m1_det_context_conv3_1_relu = ReLU(name='ssh_m1_det_context_conv3_1_relu')(ssh_m1_det_context_conv3_1_bn)
|
624 |
+
|
625 |
+
face_rpn_cls_prob_stride16 = Softmax(name = 'face_rpn_cls_prob_stride16')(face_rpn_cls_score_reshape_stride16)
|
626 |
+
|
627 |
+
input_shape = [tf.shape(face_rpn_cls_prob_stride16)[k] for k in range(4)]
|
628 |
+
sz = tf.dtypes.cast(input_shape[1] / 2, dtype=tf.int32)
|
629 |
+
inter_1 = face_rpn_cls_prob_stride16[:, 0:sz, :, 0]
|
630 |
+
inter_2 = face_rpn_cls_prob_stride16[:, 0:sz, :, 1]
|
631 |
+
inter_3 = face_rpn_cls_prob_stride16[:, sz:, :, 0]
|
632 |
+
inter_4 = face_rpn_cls_prob_stride16[:, sz:, :, 1]
|
633 |
+
final = tf.stack([inter_1, inter_3, inter_2, inter_4])
|
634 |
+
face_rpn_cls_prob_reshape_stride16 = tf.transpose(final, (1, 2, 3, 0), name="face_rpn_cls_prob_reshape_stride16")
|
635 |
+
|
636 |
+
ssh_m1_det_context_conv3_2_pad = ZeroPadding2D(padding=tuple([1, 1]))(ssh_m1_det_context_conv3_1_relu)
|
637 |
+
|
638 |
+
ssh_m1_det_context_conv3_2 = Conv2D(filters = 128, kernel_size = (3, 3), name = 'ssh_m1_det_context_conv3_2', strides = [1, 1], padding = 'VALID', use_bias = True)(ssh_m1_det_context_conv3_2_pad)
|
639 |
+
|
640 |
+
ssh_m1_det_context_conv3_2_bn = BatchNormalization(epsilon=1.9999999494757503e-05, name='ssh_m1_det_context_conv3_2_bn', trainable=False)(ssh_m1_det_context_conv3_2)
|
641 |
+
|
642 |
+
ssh_m1_det_concat = concatenate([ssh_m1_det_conv1_bn, ssh_m1_det_context_conv2_bn, ssh_m1_det_context_conv3_2_bn], 3, name='ssh_m1_det_concat')
|
643 |
+
|
644 |
+
ssh_m1_det_concat_relu = ReLU(name='ssh_m1_det_concat_relu')(ssh_m1_det_concat)
|
645 |
+
face_rpn_cls_score_stride8 = Conv2D(filters = 4, kernel_size = (1, 1), name = 'face_rpn_cls_score_stride8', strides = [1, 1], padding = 'VALID', use_bias = True)(ssh_m1_det_concat_relu)
|
646 |
+
|
647 |
+
inter_1 = concatenate([face_rpn_cls_score_stride8[:, :, :, 0], face_rpn_cls_score_stride8[:, :, :, 1]], axis=1)
|
648 |
+
inter_2 = concatenate([face_rpn_cls_score_stride8[:, :, :, 2], face_rpn_cls_score_stride8[:, :, :, 3]], axis=1)
|
649 |
+
final = tf.stack([inter_1, inter_2])
|
650 |
+
face_rpn_cls_score_reshape_stride8 = tf.transpose(final, (1, 2, 3, 0), name="face_rpn_cls_score_reshape_stride8")
|
651 |
+
|
652 |
+
face_rpn_bbox_pred_stride8 = Conv2D(filters = 8, kernel_size = (1, 1), name = 'face_rpn_bbox_pred_stride8', strides = [1, 1], padding = 'VALID', use_bias = True)(ssh_m1_det_concat_relu)
|
653 |
+
|
654 |
+
face_rpn_landmark_pred_stride8 = Conv2D(filters = 20, kernel_size = (1, 1), name = 'face_rpn_landmark_pred_stride8', strides = [1, 1], padding = 'VALID', use_bias = True)(ssh_m1_det_concat_relu)
|
655 |
+
|
656 |
+
face_rpn_cls_prob_stride8 = Softmax(name = 'face_rpn_cls_prob_stride8')(face_rpn_cls_score_reshape_stride8)
|
657 |
+
|
658 |
+
input_shape = [tf.shape(face_rpn_cls_prob_stride8)[k] for k in range(4)]
|
659 |
+
sz = tf.dtypes.cast(input_shape[1] / 2, dtype=tf.int32)
|
660 |
+
inter_1 = face_rpn_cls_prob_stride8[:, 0:sz, :, 0]
|
661 |
+
inter_2 = face_rpn_cls_prob_stride8[:, 0:sz, :, 1]
|
662 |
+
inter_3 = face_rpn_cls_prob_stride8[:, sz:, :, 0]
|
663 |
+
inter_4 = face_rpn_cls_prob_stride8[:, sz:, :, 1]
|
664 |
+
final = tf.stack([inter_1, inter_3, inter_2, inter_4])
|
665 |
+
face_rpn_cls_prob_reshape_stride8 = tf.transpose(final, (1, 2, 3, 0), name="face_rpn_cls_prob_reshape_stride8")
|
666 |
+
|
667 |
+
model = Model(inputs=data,
|
668 |
+
outputs=[face_rpn_cls_prob_reshape_stride32,
|
669 |
+
face_rpn_bbox_pred_stride32,
|
670 |
+
face_rpn_landmark_pred_stride32,
|
671 |
+
face_rpn_cls_prob_reshape_stride16,
|
672 |
+
face_rpn_bbox_pred_stride16,
|
673 |
+
face_rpn_landmark_pred_stride16,
|
674 |
+
face_rpn_cls_prob_reshape_stride8,
|
675 |
+
face_rpn_bbox_pred_stride8,
|
676 |
+
face_rpn_landmark_pred_stride8
|
677 |
+
])
|
678 |
+
model = load_weights(model)
|
679 |
+
|
680 |
+
return model
|