Spaces:
Build error
Build error
import gradio as gr | |
from openai import OpenAI | |
import os | |
import logging | |
import time | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
css = ''' | |
.gradio-container{max-width: 1000px !important} | |
h1{text-align:center} | |
footer { | |
visibility: hidden | |
} | |
''' | |
ACCESS_TOKEN = os.getenv("HF_TOKEN") | |
start_time = time.time() | |
logger.info("Loading Client....") | |
client = OpenAI( | |
base_url="https://api-inference.huggingface.co/v1/", | |
api_key=ACCESS_TOKEN, | |
) | |
end_time = time.time() | |
logger.info(f"Client Loaded. Time taken : {end_time - start_time} seconds.") | |
#interact with API | |
def respond( | |
message, | |
history, | |
temperature, | |
max_tokens, | |
): | |
SYS_PROMPT = """ | |
Extract the following information from the given text: | |
Identify the specific areas where the work needs to be done and Add the furniture that has to be changed. | |
Do not specify the work that has to be done. | |
Format the extracted information in the following JSON structure: | |
{ | |
"Area Type1": { | |
"Furnture1", | |
"Furnture2", | |
... | |
} | |
"Area Type2": { | |
"Furnture1", | |
"Furnture2", | |
... | |
} | |
} | |
Requirements: | |
1. Each area type (e.g., lobby, bar, etc.) should have its own node. | |
3. List the furniture on which the work needs to be performed without specifying the work or units of items. | |
4. Ignore any personal information or irrelevant details. | |
5. Follow the JSON pattern strictly and ensure clarity and accuracy in the extracted information. | |
Example: | |
Given the paragraph: "In the lobby, replace 5 light fixtures and remove 2 old carpets. In the bar, | |
install 3 new tables and remove 4 broken chairs." | |
The JSON output should be: | |
{ | |
"Lobby": { | |
"Light fixtures" | |
"Old carpets" | |
}, | |
"Bar": { | |
"New tables" | |
"Broken chairs" | |
} | |
} | |
} | |
Please ensure that the output JSON is well-structured and includes only relevant details about the work to be done. | |
""" | |
messages = [{"role": "system", "content": SYS_PROMPT}] | |
if len(history) == 0: | |
pass | |
else: | |
history.pop() | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
start_time = time.time() | |
logger.info("Generating Response....") | |
for message in client.chat.completions.create( | |
model="meta-llama/Meta-Llama-3.1-8B-Instruct", | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
messages=messages, | |
): | |
token = message.choices[0].delta.content | |
response += token | |
yield response | |
end_time = time.time() | |
logger.info(f"Response Generated. Time taken : {end_time - start_time} seconds.") | |
DESCRIPTION = ''' | |
<div> | |
<h1 style="text-align: center;">ContenteaseAI custom trained model</h1> | |
</div> | |
''' | |
LICENSE = """ | |
<p/> | |
--- | |
For more information, visit our [website](https://contentease.ai). | |
""" | |
PLACEHOLDER = """ | |
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;"> | |
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">ContenteaseAI Custom AI trained model</h1> | |
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Enter the text extracted from the PDF:</p> | |
</div> | |
""" | |
css = """ | |
h1 { | |
text-align: center; | |
display: block; | |
} | |
""" | |
chatbot = gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface') | |
with gr.Blocks(fill_height=True, css=css) as demo: | |
gr.Markdown(DESCRIPTION) | |
gr.ChatInterface( | |
fn=respond, | |
chatbot=chatbot, | |
fill_height=True, | |
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False), | |
additional_inputs=[ | |
gr.Slider(minimum=0, maximum=1, step=0.1, value=0.9, label="Temperature", render=False), | |
gr.Slider(minimum=128, maximum=2000, step=1, value=2000, label="Max new tokens", render=False), | |
] | |
) | |
gr.Markdown(LICENSE) | |
if __name__ == "__main__": | |
try: | |
demo.launch(show_error=True, debug = True) | |
except Exception as e: | |
logger.error(f"Error launching Gradio demo: {e}") |