Spaces:
Runtime error
Runtime error
import gradio as gr | |
import os | |
import torch | |
from transformers import AutoConfig, AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer | |
from threading import Thread | |
from accelerate import init_empty_weights, infer_auto_device_map, disk_offload | |
# Set environment variables | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
DESCRIPTION = ''' | |
<div> | |
<h1 style="text-align: center;">ContenteaseAI custom trained model</h1> | |
</div> | |
''' | |
LICENSE = """ | |
<p/> | |
--- | |
For more information, visit our [website](https://contentease.ai). | |
""" | |
PLACEHOLDER = """ | |
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;"> | |
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">ContenteaseAI Custom AI trained model</h1> | |
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Enter the text extracted from the PDF:</p> | |
</div> | |
""" | |
css = """ | |
h1 { | |
text-align: center; | |
display: block; | |
} | |
""" | |
def initialize_model(model_name, max_memory=None): | |
device = torch.device('cpu') | |
# Load model configuration | |
config = AutoConfig.from_pretrained(model_name) | |
with init_empty_weights(): | |
# Initialize model with empty weights | |
model = AutoModelForCausalLM.from_config(config) | |
# Create device map based on memory constraints | |
device_map = infer_auto_device_map( | |
model, max_memory=max_memory, no_split_module_classes=["GPTNeoXLayer"], dtype="float16" | |
) | |
# Determine if offloading is needed | |
needs_offloading = any(device == 'disk' for device in device_map.values()) | |
if needs_offloading: | |
# Load model for offloading | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, device_map=device_map, offload_folder="offload", | |
offload_state_dict=True, torch_dtype=torch.float16 | |
) | |
offload_directory = "offload/" | |
# Offload model to disk | |
disk_offload(model=model, offload_dir=offload_directory) | |
else: | |
# Load model normally to specified device | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, torch_dtype=torch.float16 | |
) | |
model.to(device) | |
return model | |
try: | |
# Initialize the model and tokenizer | |
model_name = "meta-llama/Meta-Llama-3-8B-Instruct" | |
model = initialize_model(model_name, max_memory={"cpu": "GiB"}) | |
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=HF_TOKEN) | |
except Exception as e: | |
print(f"Error initializing model: {e}") | |
exit(1) | |
terminators = [ | |
tokenizer.eos_token_id, | |
tokenizer.convert_tokens_to_ids("") | |
] | |
def chat_llama3_8b(message: str, history: list, temperature: float, max_new_tokens: int) -> str: | |
""" | |
Generate a streaming response using the llama3-8b model. | |
Args: | |
message (str): The input message. | |
history (list): The conversation history used by ChatInterface. | |
temperature (float): The temperature for generating the response. | |
max_new_tokens (int): The maximum number of new tokens to generate. | |
Returns: | |
str: The generated response. | |
""" | |
conversation = [] | |
message += " Extract all relevant keywords and add quantity from the following text and format the result in nested JSON:" | |
for user, assistant in history: | |
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) | |
conversation.append({"role": "user", "content": message}) | |
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to(model.device) | |
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
input_ids=input_ids, | |
streamer=streamer, | |
max_new_tokens=max_new_tokens, | |
do_sample=True, | |
temperature=temperature, | |
eos_token_id=terminators, | |
) | |
if temperature == 0: | |
generate_kwargs['do_sample'] = False | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
outputs = [] | |
for text in streamer: | |
outputs.append(text) | |
yield "".join(outputs) | |
# Gradio block | |
chatbot = gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface') | |
with gr.Blocks(fill_height=True, css=css) as demo: | |
gr.Markdown(DESCRIPTION) | |
gr.ChatInterface( | |
fn=chat_llama3_8b, | |
chatbot=chatbot, | |
fill_height=True, | |
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False), | |
additional_inputs=[ | |
gr.Slider( | |
minimum=0, | |
maximum=1, | |
step=0.1, | |
value=0.95, | |
label="Temperature", | |
render=False | |
), | |
gr.Slider( | |
minimum=128, | |
maximum=9012, | |
step=1, | |
value=512, | |
label="Max new tokens", | |
render=False | |
), | |
] | |
) | |
gr.Markdown(LICENSE) | |
if __name__ == "__main__": | |
demo.launch(server_port=8000, share=True) | |