Spaces:
Sleeping
Sleeping
Update pages/RoadMap.py
#8
by
ManiTeja13
- opened
- pages/RoadMap.py +227 -121
pages/RoadMap.py
CHANGED
@@ -1,140 +1,246 @@
|
|
1 |
import streamlit as st
|
2 |
|
3 |
-
# Custom CSS to
|
4 |
st.markdown("""
|
5 |
<style>
|
6 |
.main {
|
7 |
-
background-color: #
|
8 |
}
|
9 |
-
.
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
11 |
margin-top: 20px;
|
12 |
-
margin-bottom: 20px;
|
13 |
}
|
14 |
.content {
|
15 |
color: #333333;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
}
|
17 |
-
.
|
18 |
-
font-size:
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
}
|
23 |
-
.
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
}
|
29 |
</style>
|
30 |
""", unsafe_allow_html=True)
|
31 |
|
32 |
-
# Initialize session state
|
33 |
-
if 'open_expander' not in st.session_state:
|
34 |
-
st.session_state.open_expander = None
|
35 |
-
|
36 |
# Page title
|
37 |
st.title("Data Analysis Roadmap")
|
38 |
|
39 |
-
#
|
40 |
-
st.image("images/data_analysis.png", use_column_width='always'
|
41 |
-
|
42 |
-
#
|
43 |
-
st.
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
""
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
|
3 |
+
# Custom CSS to style the page with 3D features
|
4 |
st.markdown("""
|
5 |
<style>
|
6 |
.main {
|
7 |
+
background-color: #ffffff;
|
8 |
}
|
9 |
+
.center-image {
|
10 |
+
display: block;
|
11 |
+
margin-left: auto;
|
12 |
+
margin-right: auto;
|
13 |
+
width: 60%;
|
14 |
+
box-shadow: 10px 10px 30px rgba(0, 0, 0, 0.3);
|
15 |
+
border-radius: 15px;
|
16 |
margin-top: 20px;
|
|
|
17 |
}
|
18 |
.content {
|
19 |
color: #333333;
|
20 |
+
padding: 20px;
|
21 |
+
font-size: 18px;
|
22 |
+
box-shadow: 5px 5px 15px rgba(0, 0, 0, 0.2);
|
23 |
+
border-radius: 15px;
|
24 |
+
background: #f8f9fa;
|
25 |
+
margin-left: 20px;
|
26 |
+
margin-top: 20px;
|
27 |
}
|
28 |
+
.button {
|
29 |
+
font-size: 20px;
|
30 |
+
margin-bottom: 20px;
|
31 |
+
padding: 15px;
|
32 |
+
box-shadow: 3px 3px 10px rgba(0, 0, 0, 0.2);
|
33 |
+
border-radius: 10px;
|
34 |
+
background: #007bff;
|
35 |
+
color: white;
|
36 |
+
transition: transform 0.2s, background 0.2s;
|
37 |
+
border: none;
|
38 |
+
width: 100%;
|
39 |
+
text-align: left;
|
40 |
}
|
41 |
+
.button:hover {
|
42 |
+
box-shadow: 3px 3px 15px rgba(0, 0, 0, 0.3);
|
43 |
+
transform: scale(1.05);
|
44 |
+
cursor: pointer;
|
45 |
+
background: #0056b3;
|
46 |
+
}
|
47 |
+
.button:focus {
|
48 |
+
outline: none;
|
49 |
+
box-shadow: 6px 6px 15px rgba(0, 0, 0, 0.3);
|
50 |
+
transform: scale(1.05);
|
51 |
+
background: linear-gradient(to bottom, #003580, #002060);
|
52 |
}
|
53 |
</style>
|
54 |
""", unsafe_allow_html=True)
|
55 |
|
|
|
|
|
|
|
|
|
56 |
# Page title
|
57 |
st.title("Data Analysis Roadmap")
|
58 |
|
59 |
+
# Center image at the top
|
60 |
+
st.image("images/data_analysis.png", use_column_width='always')
|
61 |
+
|
62 |
+
# Two-column layout
|
63 |
+
col1, col2 = st.columns([1, 2])
|
64 |
+
|
65 |
+
# Left column with the buttons
|
66 |
+
with col1:
|
67 |
+
st.header("Topics")
|
68 |
+
|
69 |
+
selection = None
|
70 |
+
if st.button("Basic Python", key="basic_python"):
|
71 |
+
selection = "Basic Python"
|
72 |
+
if st.button("Intermediate Python", key="intermediate_python"):
|
73 |
+
selection = "Intermediate Python"
|
74 |
+
if st.button("Descriptive Statistics", key="descriptive_statistics"):
|
75 |
+
selection = "Descriptive Statistics"
|
76 |
+
if st.button("NumPy", key="numpy"):
|
77 |
+
selection = "NumPy"
|
78 |
+
if st.button("Pandas", key="pandas"):
|
79 |
+
selection = "Pandas"
|
80 |
+
if st.button("Matplotlib", key="matplotlib"):
|
81 |
+
selection = "Matplotlib"
|
82 |
+
if st.button("Seaborn", key="seaborn"):
|
83 |
+
selection = "Seaborn"
|
84 |
+
if st.button("Inferential Statistics", key="inferential_statistics"):
|
85 |
+
selection = "Inferential Statistics"
|
86 |
+
|
87 |
+
# Right column with the topic description
|
88 |
+
with col2:
|
89 |
+
if selection:
|
90 |
+
if selection == "Basic Python":
|
91 |
+
st.image("images/python_logo.png", width=50)
|
92 |
+
st.markdown("""
|
93 |
+
<div class='content'>
|
94 |
+
<b>Basic Python:</b>
|
95 |
+
<p>Basic Python covers the fundamental aspects of the Python programming language.</p>
|
96 |
+
|
97 |
+
<b>Subtopics:</b>
|
98 |
+
<ul>
|
99 |
+
<li>Syntax: Understanding the basic syntax and structure of Python code.</li>
|
100 |
+
<li>Data Types: Working with strings, lists, dictionaries, and tuples.</li>
|
101 |
+
<li>Control Flow: Using loops, conditionals, and functions.</li>
|
102 |
+
<li>File Handling: Reading from and writing to files.</li>
|
103 |
+
</ul>
|
104 |
+
|
105 |
+
<b>Example:</b>
|
106 |
+
<p>Writing simple programs to automate repetitive tasks, such as renaming files in bulk.</p>
|
107 |
+
</div>
|
108 |
+
""", unsafe_allow_html=True)
|
109 |
+
|
110 |
+
elif selection == "Intermediate Python":
|
111 |
+
st.image("images/python_logo.png", width=50)
|
112 |
+
st.markdown("""
|
113 |
+
<div class='content'>
|
114 |
+
<b>Intermediate Python:</b>
|
115 |
+
<p>Intermediate Python includes more advanced features of Python programming.</p>
|
116 |
+
|
117 |
+
<b>Subtopics:</b>
|
118 |
+
<ul>
|
119 |
+
<li>Modules and Packages: Importing and organizing code into modules.</li>
|
120 |
+
<li>List Comprehensions: Creating lists in a more readable way.</li>
|
121 |
+
<li>Error Handling: Using try, except blocks to handle errors.</li>
|
122 |
+
<li>Classes and Objects: Understanding object-oriented programming concepts.</li>
|
123 |
+
</ul>
|
124 |
+
|
125 |
+
<b>Example:</b>
|
126 |
+
<p>Building reusable code modules and handling exceptions in data processing scripts.</p>
|
127 |
+
</div>
|
128 |
+
""", unsafe_allow_html=True)
|
129 |
+
|
130 |
+
elif selection == "Descriptive Statistics":
|
131 |
+
st.image("images/statistics_logo.png", width=50)
|
132 |
+
st.markdown("""
|
133 |
+
<div class='content'>
|
134 |
+
<b>Descriptive Statistics:</b>
|
135 |
+
<p>Descriptive statistics summarize and describe the main features of a dataset.</p>
|
136 |
+
|
137 |
+
<b>Subtopics:</b>
|
138 |
+
<ul>
|
139 |
+
<li>Central Tendency: Mean, median, mode.</li>
|
140 |
+
<li>Dispersion: Variance, standard deviation, range.</li>
|
141 |
+
<li>Distribution: Quartiles, percentiles, histograms.</li>
|
142 |
+
</ul>
|
143 |
+
|
144 |
+
<b>Example:</b>
|
145 |
+
<p>Summarizing sales data to understand the average sales per month and the variability in sales.</p>
|
146 |
+
</div>
|
147 |
+
""", unsafe_allow_html=True)
|
148 |
+
|
149 |
+
elif selection == "NumPy":
|
150 |
+
st.image("images/numpy_logo.png", width=50)
|
151 |
+
st.markdown("""
|
152 |
+
<div class='content'>
|
153 |
+
<b>NumPy:</b>
|
154 |
+
<p>NumPy is a fundamental package for numerical computing in Python.</p>
|
155 |
+
|
156 |
+
<b>Subtopics:</b>
|
157 |
+
<ul>
|
158 |
+
<li>Arrays: Creating and manipulating arrays.</li>
|
159 |
+
<li>Mathematical Operations: Performing element-wise and matrix operations.</li>
|
160 |
+
<li>Statistical Functions: Using built-in functions for analysis.</li>
|
161 |
+
<li>Data Transformation: Reshaping and slicing arrays.</li>
|
162 |
+
</ul>
|
163 |
+
|
164 |
+
<b>Example:</b>
|
165 |
+
<p>Performing fast and efficient calculations on large datasets, such as computing the sum of all elements in an array.</p>
|
166 |
+
</div>
|
167 |
+
""", unsafe_allow_html=True)
|
168 |
+
|
169 |
+
elif selection == "Pandas":
|
170 |
+
st.image("images/pandas_logo.png", width=100)
|
171 |
+
st.markdown("""
|
172 |
+
<div class='content'>
|
173 |
+
<b>Pandas:</b>
|
174 |
+
<p>Pandas is a powerful library for data manipulation and analysis in Python.</p>
|
175 |
+
|
176 |
+
<b>Subtopics:</b>
|
177 |
+
<ul>
|
178 |
+
<li>DataFrames: Creating and manipulating DataFrames.</li>
|
179 |
+
<li>Data Cleaning: Handling missing values and duplicates.</li>
|
180 |
+
<li>Data Transformation: Merging, joining, and concatenating DataFrames.</li>
|
181 |
+
<li>Data Analysis: Grouping and aggregating data.</li>
|
182 |
+
</ul>
|
183 |
+
|
184 |
+
<b>Example:</b>
|
185 |
+
<p>Cleaning and analyzing sales data from different regions to find total sales per product category.</p>
|
186 |
+
</div>
|
187 |
+
""", unsafe_allow_html=True)
|
188 |
+
|
189 |
+
elif selection == "Matplotlib":
|
190 |
+
st.image("images/matplotlib_logo.png", width=100)
|
191 |
+
st.markdown("""
|
192 |
+
<div class='content'>
|
193 |
+
<b>Matplotlib:</b>
|
194 |
+
<p>Matplotlib is a plotting library for creating static, interactive, and animated visualizations in Python.</p>
|
195 |
+
|
196 |
+
<b>Subtopics:</b>
|
197 |
+
<ul>
|
198 |
+
<li>Basic Plots: Creating line, bar, and scatter plots.</li>
|
199 |
+
<li>Customization: Customizing plots with titles, labels, and legends.</li>
|
200 |
+
<li>Subplots: Creating multiple plots in a single figure.</li>
|
201 |
+
</ul>
|
202 |
+
|
203 |
+
<b>Example:</b>
|
204 |
+
<p>Visualizing sales trends over time with a line chart and customizing it to include titles and labels.</p>
|
205 |
+
</div>
|
206 |
+
""", unsafe_allow_html=True)
|
207 |
+
|
208 |
+
elif selection == "Seaborn":
|
209 |
+
st.image("images/seaborn_logo.png", width=100)
|
210 |
+
st.markdown("""
|
211 |
+
<div class='content'>
|
212 |
+
<b>Seaborn:</b>
|
213 |
+
<p>Seaborn is a data visualization library based on Matplotlib that provides a high-level interface for drawing attractive statistical graphics.</p>
|
214 |
+
|
215 |
+
<b>Subtopics:</b>
|
216 |
+
<ul>
|
217 |
+
<li>Statistical Plots: Creating plots like histograms, box plots, and violin plots.</li>
|
218 |
+
<li>Customization: Advanced customization of plots.</li>
|
219 |
+
<li>Integration: Seamless integration with pandas DataFrames.</li>
|
220 |
+
</ul>
|
221 |
+
|
222 |
+
<b>Example:</b>
|
223 |
+
<p>Creating a box plot to visualize the distribution of exam scores across different classes.</p>
|
224 |
+
</div>
|
225 |
+
""", unsafe_allow_html=True)
|
226 |
+
|
227 |
+
elif selection == "Inferential Statistics":
|
228 |
+
st.image("images/statistics_logo.png", width=50)
|
229 |
+
st.markdown("""
|
230 |
+
<div class='content'>
|
231 |
+
<b>Inferential Statistics:</b>
|
232 |
+
<p>Inferential statistics allow us to make predictions or inferences about a population based on a sample of data.</p>
|
233 |
+
|
234 |
+
<b>Subtopics:</b>
|
235 |
+
<ul>
|
236 |
+
<li>Hypothesis Testing: Determining the validity of assumptions.</li>
|
237 |
+
<li>Confidence Intervals: Estimating population parameters.</li>
|
238 |
+
<li>Regression Analysis: Modeling relationships between variables.</li>
|
239 |
+
<li>ANOVA and Chi-Square Tests: Comparing group means and categorical variables.</li>
|
240 |
+
</ul>
|
241 |
+
|
242 |
+
<b>Example:</b>
|
243 |
+
<p>Using regression analysis to predict future sales based on past data trends and conducting hypothesis tests to determine if a new marketing strategy significantly impacts sales.</p>
|
244 |
+
</div>
|
245 |
+
""", unsafe_allow_html=True)
|
246 |
+
|