Spaces:
Runtime error
Runtime error
File size: 2,127 Bytes
f611e6b 98740a5 f611e6b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
"""import gradio as gr
from sentence_transformers import SentenceTransformer, util
i18n_model = SentenceTransformer('distiluse-base-multilingual-cased-v2')
def inference(s1:str, s2:str):
score = util.cos_sim(i18n_model.encode(s1), i18n_model.encode(s2)).item()
return f'{score:.3f}'
gr.Interface(
inference,
[ gr.Textbox(label="Sentence 1"), gr.Textbox(label="Sentence 2") ],
[ gr.components.Label(label="Similarity score") ],
title="Similarity score between 2 sentences",
description="In this demo do provide 2 sentences bellow. They can even be in distinct languages. Powered by S-BERT multilingual model : https://www.sbert.net.",
examples=[['The sentences are mapped such that sentences with similar meanings are close in vector space.', 'Les phrases sont mappées de manière à ce que les phrases ayant des significations similaires soient proches dans l\'espace vectoriel.'],
['You do not need to specify the input language.', 'You can use any language.']],
live=True,
allow_flagging="never"
).launch(debug=True, enable_queue=True)"""
import streamlit as st
from sentence_transformers import SentenceTransformer, util
i18n_model = SentenceTransformer('distiluse-base-multilingual-cased-v2')
#def inference(s1:str, s2:str):
# score = util.cos_sim(i18n_model.encode(s1), i18n_model.encode(s2)).item()
# return f'{score:.3f}'
txt1 = st.text_area('Text1','Account issues Create, download, and send white-label reports to your customers to keep them posted on how their campaigns are going. Watch a short video review of the Dedicated SEO Dashboard ')
list1 = txt1.split(" ")
txt2 = st.text_area('Text2','Проблеми з обліковим записом Створюйте, завантажуйте та надсилайте своїм клієнтам звіти з білою етикеткою, щоб вони були в курсі того, як проходять їхні кампанії. ')
list2 = txt2.split(" ")
i = 1
while i < 1000:
st.write(util.cos_sim(i18n_model.encode(list1[i]), i18n_model.encode(list2[i])).item())
i += 1 |