File size: 43,927 Bytes
9d8df86
 
 
 
38b3cc5
d2a93c9
 
9d8df86
fd11110
 
9d8df86
ff1b4d3
897fb70
 
 
c2a46b3
38b3cc5
9d8df86
 
 
897fb70
ff1b4d3
001e628
 
 
 
 
ff1b4d3
 
d89b36d
ffe0a95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8eafe1
 
 
 
 
 
 
 
 
 
 
 
 
 
ffe0a95
d89b36d
 
897fb70
001e628
 
 
ffe0a95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
001e628
 
ffe0a95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
001e628
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
897fb70
fd11110
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
897fb70
 
ff1b4d3
39a451a
fd11110
 
 
 
 
 
 
 
 
 
 
 
38b3cc5
fd11110
 
 
39a451a
fd11110
 
38b3cc5
fd11110
 
9d8df86
897fb70
9d8df86
 
 
 
 
 
 
 
 
 
 
 
 
897fb70
9d8df86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
897fb70
9d8df86
ff1b4d3
 
 
 
 
 
 
 
9d8df86
ff1b4d3
 
 
 
 
 
 
 
 
9d8df86
ff1b4d3
 
9d8df86
f97296a
 
a8eafe1
 
 
d021055
5246944
f97296a
 
 
28e0649
 
 
a8eafe1
 
28e0649
f97296a
a8eafe1
28e0649
 
 
 
a8eafe1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d89b36d
 
f97296a
 
30d63b9
5246944
 
a8eafe1
 
 
5246944
a8eafe1
8d039b9
a8eafe1
 
 
 
5246944
8d039b9
f97296a
5246944
8d039b9
f97296a
5246944
a8eafe1
 
 
8d039b9
 
895ad65
5246944
 
 
 
 
 
f97296a
030aaa2
f97296a
 
 
8d039b9
f97296a
5246944
a8eafe1
5246944
 
 
a8eafe1
28e0649
a8eafe1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28e0649
f97296a
28e0649
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f97296a
 
 
897fb70
 
f97296a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8eafe1
001e628
 
a8eafe1
f97296a
a8eafe1
ffe0a95
 
f97296a
 
 
 
 
 
 
 
 
ffe0a95
 
 
 
a8eafe1
ffe0a95
 
a8eafe1
f97296a
 
a8eafe1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d89b36d
8b246e4
0536b51
 
 
 
 
 
 
 
 
d89b36d
0536b51
cb22f6c
d89b36d
cb22f6c
 
 
d89b36d
 
897fb70
 
d89b36d
897fb70
 
 
 
d89b36d
897fb70
 
 
 
 
 
 
d89b36d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
897fb70
d89b36d
897fb70
d89b36d
 
 
 
 
 
 
 
 
 
 
 
 
897fb70
cb22f6c
897fb70
d89b36d
 
 
897fb70
9d8df86
d89b36d
 
 
9d8df86
0536b51
 
 
 
d89b36d
 
 
897fb70
9d8df86
 
897fb70
38b3cc5
d89b36d
 
 
ff1b4d3
d89b36d
 
 
 
cb22f6c
d89b36d
 
39a451a
d89b36d
 
 
 
 
 
 
 
 
 
 
 
0536b51
d89b36d
 
 
0536b51
d89b36d
 
 
0536b51
d89b36d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a077d87
9d8df86
d89b36d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb22f6c
d89b36d
 
a077d87
 
d89b36d
 
 
001e628
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0e7edc
 
 
 
 
 
 
 
 
 
 
 
 
 
001e628
 
c2a46b3
 
 
 
 
 
 
 
 
 
d89b36d
001e628
 
d89b36d
001e628
d89b36d
 
 
 
 
 
 
 
 
a077d87
9d8df86
d89b36d
 
9d8df86
 
d89b36d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d8df86
897fb70
 
 
cb22f6c
 
897fb70
 
bfc0f42
0536b51
 
 
 
 
 
 
 
 
897fb70
 
 
d89b36d
 
 
 
 
 
001e628
 
 
 
 
 
d2a93c9
001e628
d2a93c9
 
 
 
 
 
 
 
001e628
d2a93c9
 
 
 
 
 
 
 
001e628
d2a93c9
 
 
 
 
 
 
 
001e628
d2a93c9
0536b51
d2a93c9
 
 
 
 
0536b51
d89b36d
 
39a451a
d89b36d
b74b8ba
 
d89b36d
39a451a
d89b36d
b74b8ba
 
39a451a
fd11110
 
b74b8ba
fd11110
 
d89b36d
b74b8ba
8b246e4
 
fd11110
 
8b246e4
b74b8ba
 
8b246e4
d89b36d
 
 
fd11110
d89b36d
a077d87
 
d89b36d
a077d87
 
d89b36d
 
 
a077d87
d89b36d
 
a077d87
 
8b246e4
 
 
a077d87
8b246e4
a077d87
d89b36d
 
 
8b246e4
 
 
 
 
d89b36d
 
 
 
0536b51
 
 
d89b36d
0536b51
 
d89b36d
0536b51
 
 
d89b36d
 
a077d87
d89b36d
a077d87
 
d89b36d
0536b51
 
d89b36d
 
 
 
 
 
 
 
 
 
 
 
a077d87
d89b36d
 
 
 
 
a077d87
d89b36d
 
 
 
 
 
a077d87
d89b36d
9d8df86
d89b36d
9d8df86
d89b36d
9d8df86
8b246e4
 
 
 
d2a93c9
 
8b246e4
9d8df86
897fb70
 
 
 
 
 
 
d89b36d
 
 
 
897fb70
 
0536b51
 
 
 
001e628
 
0536b51
 
 
 
 
d89b36d
 
 
558d6bc
 
 
 
cb22f6c
 
d89b36d
 
cb22f6c
 
f97296a
 
 
 
 
 
 
 
 
9d8df86
f97296a
9d8df86
897fb70
d89b36d
 
 
ff1b4d3
9d8df86
 
 
 
ff1b4d3
 
 
cb22f6c
897fb70
 
 
ff1b4d3
cb22f6c
ff1b4d3
9d8df86
38b3cc5
9d8df86
38b3cc5
9d8df86
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
import os
import re
import tempfile
import requests
import gradio as gr
print(f"Gradio version: {gr.__version__}")

from PyPDF2 import PdfReader
import fitz  # pymupdf

import logging
import webbrowser
from huggingface_hub import InferenceClient
from typing import Dict, List, Optional, Tuple
import time
from groq import Groq  # Import the Groq client

# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

# Constants
CONTEXT_SIZES = {
   "4K": 4096,  
   "8K": 8192,  
   "32K": 32768,
   "64K": 65536,
   "128K": 131072
}

MODEL_CONTEXT_SIZES = {
    "Clipboard only": 4096,
    "OpenAI ChatGPT": {
        "gpt-3.5-turbo": 16385,
        "gpt-3.5-turbo-0125": 16385,
        "gpt-3.5-turbo-1106": 16385,
        "gpt-3.5-turbo-instruct": 4096,
        "gpt-4": 8192,
        "gpt-4-0314": 8192,
        "gpt-4-0613": 8192,
        "gpt-4-turbo": 128000,
        "gpt-4-turbo-2024-04-09": 128000,
        "gpt-4-turbo-preview": 128000,
        "gpt-4-0125-preview": 128000,
        "gpt-4-1106-preview": 128000,
        "gpt-4o": 128000,
        "gpt-4o-2024-11-20": 128000,
        "gpt-4o-2024-08-06": 128000,
        "gpt-4o-2024-05-13": 128000,
        "chatgpt-4o-latest": 128000,
        "gpt-4o-mini": 128000,
        "gpt-4o-mini-2024-07-18": 128000,
        "gpt-4o-realtime-preview": 128000,
        "gpt-4o-realtime-preview-2024-10-01": 128000,
        "gpt-4o-audio-preview": 128000,
        "gpt-4o-audio-preview-2024-10-01": 128000,
        "o1-preview": 128000,
        "o1-preview-2024-09-12": 128000,
        "o1-mini": 128000,
        "o1-mini-2024-09-12": 128000,
    },
    "HuggingFace Inference": {
        "microsoft/phi-3-mini-4k-instruct": 4096,
        "microsoft/Phi-3-mini-128k-instruct": 131072, # Added Phi-3 128k
        "HuggingFaceH4/zephyr-7b-beta": 8192,
        "deepseek-ai/DeepSeek-Coder-V2-Instruct": 8192,
        "meta-llama/Llama-3-8b-Instruct": 8192,
        "mistralai/Mistral-7B-Instruct-v0.3": 32768,
        "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO": 32768,
        "microsoft/Phi-3.5-mini-instruct": 4096,
        "HuggingFaceTB/SmolLM2-1.7B-Instruct": 2048,
        "google/gemma-2-2b-it": 2048,
        "openai-community/gpt2": 1024,
        "microsoft/phi-2": 2048,
        "TinyLlama/TinyLlama-1.1B-Chat-v1.0": 2048
    },
    "Groq API": {
        "gemma2-9b-it": 8192,
        "gemma-7b-it": 8192,
        "llama-3.3-70b-versatile": 131072,
        "llama-3.1-70b-versatile": 131072, # Deprecated
        "llama-3.1-8b-instant": 131072,
        "llama-guard-3-8b": 8192,
        "llama3-70b-8192": 8192,
        "llama3-8b-8192": 8192,
        "mixtral-8x7b-32768": 32768,
        "llama3-groq-70b-8192-tool-use-preview": 8192,
        "llama3-groq-8b-8192-tool-use-preview": 8192,
        "llama-3.3-70b-specdec": 131072,
        "llama-3.1-70b-specdec": 131072,
        "llama-3.2-1b-preview": 131072,
        "llama-3.2-3b-preview": 131072,
    },
    "Cohere API": {
        "command-r-plus-08-2024": 131072,  # 128k
        "command-r-plus-04-2024": 131072,
        "command-r-plus": 131072,
        "command-r-08-2024": 131072,
        "command-r-03-2024": 131072,
        "command-r": 131072,
        "command": 4096,
        "command-nightly": 131072,
        "command-light": 4096,
        "command-light-nightly": 4096,
        "c4ai-aya-expanse-8b": 8192,
        "c4ai-aya-expanse-32b": 131072,
    }
}

class ModelRegistry:
   def __init__(self):
       # HuggingFace Models
       self.hf_models = {
            "Phi-3 Mini 4K": "microsoft/phi-3-mini-4k-instruct",
            "Phi-3 Mini 128k": "microsoft/Phi-3-mini-128k-instruct", # Added
            "Zephyr 7B Beta": "HuggingFaceH4/zephyr-7b-beta",
            "DeepSeek Coder V2": "deepseek-ai/DeepSeek-Coder-V2-Instruct",
            "Meta Llama 3.1 8B": "meta-llama/Llama-3-8b-Instruct",
            "Meta Llama 3.1 70B": "meta-llama/Meta-Llama-3.1-70B-Instruct",
            "Mixtral 7B": "mistralai/Mistral-7B-Instruct-v0.3",
            "Nous-Hermes": "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
            "Cohere Command R+": "CohereForAI/c4ai-command-r-plus",
            "Aya 23-35B": "CohereForAI/aya-23-35B",
            "Phi-3.5 Mini": "microsoft/Phi-3.5-mini-instruct", # Added
            "SmolLM2 1.7B": "HuggingFaceTB/SmolLM2-1.7B-Instruct", # Added
            "Gemma 2 2B": "google/gemma-2-2b-it", # Added
            "GPT2": "openai-community/gpt2", # Added
            "Phi-2": "microsoft/phi-2", # Added
            "TinyLlama 1.1B": "TinyLlama/TinyLlama-1.1B-Chat-v1.0", # Added
            "Custom Model": ""  # Keep for custom models
        }
       
       # Default Groq Models
       self.default_groq_models = {  # Keep defaults in case fetching fails
            "gemma2-9b-it": "gemma2-9b-it",
            "gemma-7b-it": "gemma-7b-it",
            "llama-3.3-70b-versatile": "llama-3.3-70b-versatile",
            "llama-3.1-70b-versatile": "llama-3.1-70b-versatile", # Deprecated
            "llama-3.1-8b-instant": "llama-3.1-8b-instant",
            "llama-guard-3-8b": "llama-guard-3-8b",
            "llama3-70b-8192": "llama3-70b-8192",
            "llama3-8b-8192": "llama3-8b-8192",
            "mixtral-8x7b-32768": "mixtral-8x7b-32768",
            "llama3-groq-70b-8192-tool-use-preview": "llama3-groq-70b-8192-tool-use-preview",
            "llama3-groq-8b-8192-tool-use-preview": "llama3-groq-8b-8192-tool-use-preview",
            "llama-3.3-70b-specdec": "llama-3.3-70b-specdec",
            "llama-3.1-70b-specdec": "llama-3.1-70b-specdec",
            "llama-3.2-1b-preview": "llama-3.2-1b-preview",
            "llama-3.2-3b-preview": "llama-3.2-3b-preview",
        }
       
       self.groq_models = self._fetch_groq_models()

   def _fetch_groq_models(self) -> Dict[str, str]:
       """Fetch available Groq models with proper error handling"""
       try:
           groq_api_key = os.getenv('GROQ_API_KEY')
           if not groq_api_key:
               logging.warning("No GROQ_API_KEY found in environment")
               return self.default_groq_models

           headers = {
               "Authorization": f"Bearer {groq_api_key}",
               "Content-Type": "application/json"
           }
           
           response = requests.get(
               "https://api.groq.com/openai/v1/models", 
               headers=headers,
               timeout=10
           )
           
           if response.status_code == 200:
               models = response.json().get("data", [])
               model_dict = {model["id"]: model["id"] for model in models}
               
               # Merge with defaults to ensure all models are available
               return {**self.default_groq_models, **model_dict}
           else:
               logging.error(f"Failed to fetch Groq models: {response.status_code}")
               return self.default_groq_models
               
       except requests.exceptions.Timeout:
           logging.error("Timeout while fetching Groq models")
           return self.default_groq_models
       except Exception as e:
           logging.error(f"Error fetching Groq models: {e}")
           return self.default_groq_models

   def _get_default_groq_models(self) -> Dict[str, str]:
       """Return default Groq models"""
       return self.default_groq_models

   def refresh_groq_models(self) -> Dict[str, str]:
       """Refresh the list of available Groq models"""
       self.groq_models = self._fetch_groq_models()
       return self.groq_models

class PDFProcessor:
    """Handles PDF conversion to text and markdown using different methods"""
    
    @staticmethod
    def txt_convert(pdf_path: str) -> str:
        """Basic text extraction using PyPDF2"""
        try:
            reader = PdfReader(pdf_path)
            text = ""
            for page_num, page in enumerate(reader.pages, start=1):
                page_text = page.extract_text()
                if page_text:
                    text += page_text + "\n"
                else:
                    logging.warning(f"No text found on page {page_num}.")
            return text
        except Exception as e:
            logging.error(f"Error in txt conversion: {e}")
            return f"Error: {str(e)}"

    @staticmethod
    def md_convert_with_pymupdf(pdf_path: str) -> str:
        """Convert PDF to Markdown using pymupdf"""
        try:
            doc = fitz.open(pdf_path)
            markdown_text = []
            
            for page in doc:
                blocks = page.get_text("dict")["blocks"]
                
                for block in blocks:
                    if "lines" in block:
                        for line in block["lines"]:
                            for span in line["spans"]:
                                font_size = span["size"]
                                content = span["text"]
                                font_flags = span["flags"]  # Contains bold, italic info
                                
                                # Handle headers based on font size
                                if font_size > 20:
                                    markdown_text.append(f"# {content}\n")
                                elif font_size > 16:
                                    markdown_text.append(f"## {content}\n")
                                elif font_size > 14:
                                    markdown_text.append(f"### {content}\n")
                                else:
                                    # Handle bold and italic
                                    if font_flags & 2**4:  # Bold
                                        content = f"**{content}**"
                                    if font_flags & 2**1:  # Italic
                                        content = f"*{content}*"
                                    markdown_text.append(content)
                            
                            markdown_text.append(" ")  # Space between spans
                        markdown_text.append("\n")  # Newline between lines
                    
                    # Add extra newline between blocks for paragraphs
                    markdown_text.append("\n")
                
            doc.close()
            return "".join(markdown_text)
        except Exception as e:
            logging.error(f"Error in pymupdf conversion: {e}")
            return f"Error: {str(e)}"

# Initialize model registry
model_registry = ModelRegistry()

def extract_text_from_pdf(pdf_path: str, format_type: str = "txt") -> str:
    """
    Extract and format text from PDF using different processors based on format.
    
    Args:
        pdf_path: Path to PDF file
        format_type: Either 'txt' or 'md'
    
    Returns:
        Formatted text content
    """
    processor = PDFProcessor()
    
    try:
        if format_type == "txt":
            return processor.txt_convert(pdf_path)
        elif format_type == "md":
            return processor.md_convert_with_pymupdf(pdf_path)
        else:
            return f"Error: Unsupported format type: {format_type}"
    except Exception as e:
        logging.error(f"Error in PDF conversion: {e}")
        return f"Error: {str(e)}"

def format_content(text: str, format_type: str) -> str:
    """Format extracted text according to specified format."""
    if format_type == 'txt':
        return text
    elif format_type == 'md':
        paragraphs = text.split('\n\n')
        return '\n\n'.join(paragraphs)
    elif format_type == 'html':
        paragraphs = text.split('\n\n')
        return ''.join([f'<p>{para.strip()}</p>' for para in paragraphs if para.strip()])
    else:
        logging.error(f"Unsupported format: {format_type}")
        return f"Unsupported format: {format_type}"

def split_into_snippets(text: str, context_size: int) -> List[str]:
    """Split text into manageable snippets based on context size."""
    sentences = re.split(r'(?<=[.!?]) +', text)
    snippets = []
    current_snippet = ""

    for sentence in sentences:
        if len(current_snippet) + len(sentence) + 1 > context_size:
            if current_snippet:
                snippets.append(current_snippet.strip())
                current_snippet = sentence + " "
            else:
                snippets.append(sentence.strip())
                current_snippet = ""
        else:
            current_snippet += sentence + " "

    if current_snippet.strip():
        snippets.append(current_snippet.strip())

    return snippets

def build_prompts(snippets: List[str], prompt_instruction: str, custom_prompt: Optional[str], snippet_num: Optional[int] = None) -> str:
    """Build formatted prompts from text snippets."""
    if snippet_num is not None:
        if 1 <= snippet_num <= len(snippets):
            selected_snippets = [snippets[snippet_num - 1]]
        else:
            return f"Error: Invalid snippet number. Please choose between 1 and {len(snippets)}."
    else:
        selected_snippets = snippets

    prompts = []
    base_prompt = custom_prompt if custom_prompt else prompt_instruction
    
    for idx, snippet in enumerate(selected_snippets, start=1):
        if len(selected_snippets) > 1:
            prompt_header = f"{base_prompt} Part {idx} of {len(selected_snippets)}: ---\n"
        else:
            prompt_header = f"{base_prompt} ---\n"
        
        framed_prompt = f"{prompt_header}{snippet}\n---"
        prompts.append(framed_prompt)
    
    return "\n\n".join(prompts)

def send_to_model(prompt, model_selection, hf_model_choice, hf_custom_model, hf_api_key,
                 groq_model_choice, groq_api_key, openai_api_key, openai_model_choice):
    """Wrapper function for send_to_model_impl with comprehensive error handling."""
    
    logging.info("send to model starting...")
    
    if not prompt or not prompt.strip():
        return "Error: No prompt provided", None
        
    try:
        logging.info("sending to model preparation.")
        
        # Basic input validation
        valid_selections = ["Clipboard only", "HuggingFace Inference", "Groq API", "OpenAI ChatGPT", "Cohere API"]
        if model_selection not in valid_selections:
            return "Error: Invalid model selection", None
            
        # Model-specific validation
        if model_selection == "Groq API" and not groq_api_key:
            return "Error: Groq API key required", None
        elif model_selection == "OpenAI ChatGPT" and not openai_api_key:
            return "Error: OpenAI API key required", None
            
        # Call implementation with error handling
        try:
            logging.info("calling send_to_model_impl.")
            summary, download_file = send_to_model_impl(
                prompt=prompt.strip(),
                model_selection=model_selection,
                hf_model_choice=hf_model_choice,
                hf_custom_model=hf_custom_model,
                hf_api_key=hf_api_key,
                groq_model_choice=groq_model_choice,
                groq_api_key=groq_api_key,
                openai_api_key=openai_api_key,
                openai_model_choice=openai_model_choice
            )
            logging.info("summary received:", summary)
            
            if summary is None or not isinstance(summary, str):
                return "Error: No response from model", None
                
            return summary, download_file
                
        except Exception as impl_error:
            error_msg = str(impl_error)
            if not error_msg:
                error_msg = "Unknown error occurred in model implementation"
            logging.error(f"Model implementation error: {error_msg}")
            return f"Error: {error_msg}", None
            
    except Exception as e:
        error_msg = str(e)
        if not error_msg:
            error_msg = "Unknown error occurred"
        logging.error(f"Error in send_to_model: {error_msg}")
        return f"Error: {error_msg}", None
    finally:
        logging.info("send to model completed.")

def send_to_model_impl(prompt, model_selection, hf_model_choice, hf_custom_model, hf_api_key,
                      groq_model_choice, groq_api_key, openai_api_key, openai_model_choice):
    """Implementation of model sending with improved error handling."""
    logging.info("send to model impl commencing...")
    
    try:
        if model_selection == "Clipboard only":
            return "Text copied to clipboard. Use paste for processing.", None

        if model_selection == "HuggingFace Inference":
            # First try without API key
            model_id = hf_custom_model if hf_model_choice == "Custom Model" else model_registry.hf_models[hf_model_choice]
            summary = send_to_hf_inference(prompt, model_id)
            if summary.startswith("Error"):
                if hf_api_key:  # If first try failed and we have an API key, try with it
                    summary = send_to_hf_inference(prompt, model_id, hf_api_key)
            
        elif model_selection == "Groq API":
            summary = send_to_groq(prompt, groq_model_choice, groq_api_key)
            
        elif model_selection == "OpenAI ChatGPT":
            summary = send_to_openai(prompt, openai_api_key, model=openai_model_choice)
            
        elif model_selection == "Cohere API":
            summary = send_to_cohere(prompt)
        
        else:
            return "Error: Invalid model selection", None

        # Validate response
        if not summary or not isinstance(summary, str):
            return "Error: Invalid response from model", None
            
        # Create download file for valid responses
        if not summary.startswith("Error"):
            with tempfile.NamedTemporaryFile(delete=False, mode='w', suffix='.txt') as f:
                f.write(summary)
                return summary, f.name
                
        return summary, None

    except Exception as e:
        error_msg = str(e)
        if not error_msg:
            error_msg = "Unknown error occurred"
        logging.error(f"Error in send_to_model_impl: {error_msg}")
        return f"Error: {error_msg}", None
    
def send_to_hf_inference(prompt: str, model_name: str, api_key: str = None) -> str:
    """Send prompt to HuggingFace Inference API with optional authentication."""
    try:
        client = InferenceClient(token=api_key) if api_key else InferenceClient()
        response = client.text_generation(
            prompt,
            model=model_name,
            max_new_tokens=500,
            temperature=0.7,
            top_p=0.95,
            repetition_penalty=1.1
        )
        return str(response)
    except Exception as e:
        logging.error(f"HuggingFace inference error: {e}")
        return f"Error with HuggingFace inference: {str(e)}"  # Return error message instead of raising

def send_to_hf_inference_old(prompt: str, model_name: str, api_key: str = None) -> str:
    """Send prompt to HuggingFace Inference API with optional authentication."""
    try:
        # First try without authentication
        try:
            client = InferenceClient()  # No token
            response = client.text_generation(
                prompt,
                model=model_name,
                max_new_tokens=500,
                temperature=0.7,
                top_p=0.95,
                repetition_penalty=1.1
            )
            return str(response)
        except Exception as public_error:
            logging.info(f"Public inference failed: {public_error}")
            
            # If that fails and we have an API key, try with authentication
            if api_key:
                client = InferenceClient(token=api_key)
                response = client.text_generation(
                    prompt,
                    model=model_name,
                    max_new_tokens=500,
                    temperature=0.7,
                    top_p=0.95,
                    repetition_penalty=1.1
                )
                return str(response)
            else:
                # If we don't have an API key, inform the user they need one
                return "Error: This model requires authentication. Please enter your HuggingFace API key."
                
    except Exception as e:
        logging.error(f"HuggingFace inference error: {e}")
        return f"Error with HuggingFace inference: {str(e)}"

def send_to_groq(prompt: str, model_name: str, api_key: str) -> str:
    """Send prompt to Groq API with better error handling."""
    try:
        client = Groq(api_key=api_key)
        response = client.chat.completions.create(
            model=model_name,
            messages=[{
                "role": "user", 
                "content": prompt
            }],
            temperature=0.7,
            max_tokens=500,
            top_p=0.95
        )
        return response.choices[0].message.content
    except Exception as e:
        logging.error(f"Groq API error: {e}")
        raise  # Re-raise to be handled by caller

def send_to_openai(prompt: str, api_key: str, model: str = "gpt-3.5-turbo") -> str:
    """Send prompt to OpenAI API."""
    try:
        from openai import OpenAI
        client = OpenAI(api_key=api_key)
        response = client.chat.completions.create(
            model=model,
            messages=[
                {"role": "system", "content": "You are a helpful assistant that provides detailed responses."},
                {"role": "user", "content": prompt}
            ],
            temperature=0.7,
            max_tokens=500,
            top_p=0.95
        )
        
        if response.choices and len(response.choices) > 0:
            return response.choices[0].message.content
        else:
            raise Exception("No response generated")
            
    except ImportError:
        raise Exception("Please install the latest version of openai package (pip install --upgrade openai)")
    except Exception as e:
        logging.error(f"OpenAI API error: {e}")
        raise  # Re-raise to be handled by caller
    
def send_to_cohere(prompt: str, api_key: str = None) -> str:
    """Send prompt to Cohere API with optional authentication."""
    try:
        import cohere
        client = cohere.Client(api_key) if api_key else cohere.Client()
        
        response = client.chat(
            message=prompt,
            temperature=0.7,
            max_tokens=500,
        )
        
        if hasattr(response, 'text'):
            return response.text
        else:
            return "Error: No response text from Cohere"
            
    except Exception as e:
        logging.error(f"Cohere API error: {e}")
        return f"Error with Cohere API: {str(e)}"  # Return error message instead of raising

def copy_text_js(element_id: str) -> str:
    return f"""function() {{
        let textarea = document.getElementById('{element_id}');
        if (!textarea) return 'Element not found';
        textarea.select();
        try {{
            document.execCommand('copy');
            return 'Copied to clipboard!';
        }} catch(err) {{
            return 'Failed to copy: ' + err;
        }}
    }}"""

def open_chatgpt() -> str:
    """Open ChatGPT in new browser tab"""
    return """window.open('https://chat.openai.com/', '_blank');"""

def process_pdf(pdf, fmt, ctx_size):
    """Process PDF and return text and snippets"""
    try:
        if not pdf:
            return "Please upload a PDF file.", "", [], None
        
        # Extract text
        text = extract_text_from_pdf(pdf.name)
        if text.startswith("Error"):
            return text, "", [], None
        
        # Format content
        formatted_text = format_content(text, fmt)
        
        # Split into snippets
        snippets = split_into_snippets(formatted_text, ctx_size)
        
        # Save full text for download
        with tempfile.NamedTemporaryFile(delete=False, mode='w', suffix='.txt') as text_file:
            text_file.write(formatted_text)
            
        snippet_choices = [f"Snippet {i+1} of {len(snippets)}" for i in range(len(snippets))]
        
        return (
            "PDF processed successfully!", 
            formatted_text,
            snippets,
            snippet_choices,
            [text_file.name]
        )
        
    except Exception as e:
        logging.error(f"Error processing PDF: {e}")
        return f"Error processing PDF: {str(e)}", "", [], None

def generate_prompt(text, template, snippet_idx=None):
    """Generate prompt from text or selected snippet"""
    try:
        if not text:
            return "No text available.", "", None
            
        default_prompt = "Summarize the following text:"
        prompt_template = template if template else default_prompt
        
        if isinstance(text, list):
            # If text is list of snippets
            if snippet_idx is not None:
                if 0 <= snippet_idx < len(text):
                    content = text[snippet_idx]
                else:
                    return "Invalid snippet index.", "", None
            else:
                content = "\n\n".join(text)
        else:
            content = text
            
        prompt = f"{prompt_template}\n---\n{content}\n---"
        
        # Save prompt for download
        with tempfile.NamedTemporaryFile(delete=False, mode='w', suffix='.txt') as prompt_file:
            prompt_file.write(prompt)
            
        return "Prompt generated!", prompt, [prompt_file.name]
        
    except Exception as e:
        logging.error(f"Error generating prompt: {e}")
        return f"Error generating prompt: {str(e)}", "", None

# Main Interface
with gr.Blocks(css="""
    .gradio-container {max-width: 90%; margin: 0 auto;}
    @media (max-width: 768px) {.gradio-container {max-width: 98%; padding: 10px;} .gr-row {flex-direction: column;} .gr-col {width: 100%; margin-bottom: 10px;}}
""") as demo:
    # State variables
    pdf_content = gr.State("")
    snippets = gr.State([])
    
    # Header
    gr.Markdown("# πŸ“„ Smart PDF Summarizer")
    gr.Markdown("Upload a PDF document and get AI-powered summaries using various AI models.")
    
    with gr.Tabs() as tabs:
        # Tab 1: PDF Processing
        with gr.Tab("1️⃣ PDF Processing"):
            with gr.Row():
                with gr.Column(scale=1):
                    pdf_input = gr.File(
                        label="πŸ“ Upload PDF",
                        file_types=[".pdf"]
                    )
                    
                    format_type = gr.Radio(
                        choices=["txt", "md"],
                        value="txt",
                        label="πŸ“ Output Format"
                    )
                    
                    context_size = gr.Slider(
                        minimum=1000,
                        maximum=200000,
                        step=1000,
                        value=4096,
                        label="Context Size"
                    )
                    
                    gr.Markdown("### Context Size")
                    with gr.Row():
                        for size_name, size_value in CONTEXT_SIZES.items():
                            gr.Button(
                                size_name,
                                size="sm",
                                scale=1
                            ).click(
                                lambda v=size_value: gr.update(value=v),
                                None,
                                context_size
                            )
                    
                    process_button = gr.Button("πŸ” Process PDF", variant="primary")
                    
                with gr.Column(scale=1):
                    progress_status = gr.Textbox(
                        label="Status",
                        interactive=False,
                        show_label=True,
                        visible=True  # Ensure error messages are always visible
                    )
                    processed_text = gr.Textbox(
                        label="Processed Text",
                        lines=10,
                        max_lines=50,
                        show_copy_button=True
                    )
                    download_full_text = gr.File(label="πŸ“₯ Download Full Text")

        # Tab 2: Snippet Selection
        with gr.Tab("2️⃣ Snippet Selection"):
            with gr.Row():
                with gr.Column(scale=1):
                    snippet_selector = gr.Dropdown(
                        label="Select Snippet",
                        choices=[],
                        interactive=True
                    )
                    
                    custom_prompt = gr.Textbox(
                        label="✍️ Custom Prompt Template",
                        placeholder="Enter your custom prompt here...",
                        lines=2
                    )
                    
                    generate_prompt_btn = gr.Button("Generate Prompt", variant="primary")
                    
                with gr.Column(scale=1):
                    generated_prompt = gr.Textbox(
                    label="πŸ“‹ Generated Prompt",
                    lines=10,
                    max_lines=50,
                    show_copy_button=True,
                    elem_id="generated_prompt"  # Add this
                )
                    
                    with gr.Row():
                        download_prompt = gr.File(label="πŸ“₯ Download Prompt")
                        download_snippet = gr.File(label="πŸ“₯ Download Selected Snippet")

        # Tab 3: Model Processing
        with gr.Tab("3️⃣ Model Processing"):
         with gr.Row():
           with gr.Column(scale=1):
               model_choice = gr.Radio(
                   choices=list(MODEL_CONTEXT_SIZES.keys()),
                   value="Clipboard only",
                   label="πŸ€– Provider Selection"
               )
               
               with gr.Column(visible=False) as openai_options:
                   openai_model = gr.Dropdown(
                       choices=list(MODEL_CONTEXT_SIZES["OpenAI ChatGPT"].keys()),
                       value="gpt-3.5-turbo",
                       label="OpenAI Model"
                   )
                   openai_api_key = gr.Textbox(
                       label="πŸ”‘ OpenAI API Key",
                       type="password"
                   )
               
               with gr.Column(visible=False) as hf_options:
                    hf_model = gr.Dropdown(
                        choices=list(model_registry.hf_models.keys()),
                        label="πŸ”§ HuggingFace Model",
                        value="Phi-3 Mini 4K"
                    )
                    hf_custom_model = gr.Textbox(  # This needs to be defined before being used
                        label="Custom Model ID",
                        placeholder="Enter custom model ID...",
                        visible=False
                    )
                    hf_api_key = gr.Textbox(
                        label="πŸ”‘ HuggingFace API Key",
                        type="password"
                    )
               
               with gr.Column(visible=False) as groq_options:
                    groq_model = gr.Dropdown(
                        choices=list(model_registry.groq_models.keys()),  # Use model_registry.groq_models
                        value=list(model_registry.groq_models.keys())[0] if model_registry.groq_models else None, # Set a default value if available
                        label="Groq Model"
                    )
                    groq_api_key = gr.Textbox(
                        label="πŸ”‘ Groq API Key",
                        type="password"
                    )
                    groq_refresh_btn = gr.Button("πŸ”„ Refresh Groq Models")  # Add refresh button
                    
               send_to_model_btn = gr.Button("πŸš€ Send to Model", variant="primary")
               open_chatgpt_button = gr.Button("🌐 Open ChatGPT")
                    
               with gr.Column(scale=1):
                    summary_output = gr.Textbox(
                        label="πŸ“ Summary",
                        lines=15,
                        max_lines=50,
                        show_copy_button=True,
                        elem_id="summary_output"  # Add this
                    )
                    
                    with gr.Row():
                        download_summary = gr.File(label="πŸ“₯ Download Summary")
            
    # Hidden components for file handling
    download_files = gr.Files(label="πŸ“₯ Downloads", visible=False)

    # Event Handlers
    def update_context_size(size: int) -> None:
        """Update context size slider with validation"""
        if not isinstance(size, (int, float)):
            size = 4096  # Default size
        return gr.update(value=int(size))
    
    def get_model_context_size(choice: str, groq_model: str = None) -> int:
        """Get context size for model with better defaults"""
        if choice == "Groq API" and groq_model:
            return MODEL_CONTEXT_SIZES["Groq API"].get(groq_model, 4096)
        elif choice == "OpenAI ChatGPT":
            return 4096
        elif choice == "HuggingFace Inference":
            return 4096
        return 32000  # Safe default
    
    def update_snippet_choices(snippets_list: List[str]) -> List[str]:
        """Create formatted snippet choices"""
        return [f"Snippet {i+1} of {len(snippets_list)}" for i in range(len(snippets_list))]

    def get_snippet_index(choice: str) -> int:
        """Extract snippet index from choice string"""
        if not choice:
            return 0
        try:
            return int(choice.split()[1]) - 1
        except:
            return 0

    def toggle_model_options(choice):
        return (
            gr.update(visible=choice == "HuggingFace Inference"),
            gr.update(visible=choice == "Groq API"),
            gr.update(visible=choice == "OpenAI ChatGPT")
        )

    def refresh_groq_models_list():
        try:
            with gr.Progress() as progress:
                progress(0, "Refreshing Groq models...")
                updated_models = model_registry.refresh_groq_models()
                progress(1, "Complete!")
                return gr.update(choices=list(updated_models.keys()))
        except Exception as e:
            logging.error(f"Error refreshing models: {e}")
            return gr.update()

    def toggle_custom_model(model_name):
        return gr.update(visible=model_name == "Custom Model")

    def handle_groq_model_change(model_name):
        """Handle Groq model selection change"""
        return update_context_size("Groq API", model_name)

    def handle_model_selection(choice):
        """Handle model selection and update UI"""
        ctx_size = MODEL_CONTEXT_SIZES.get(choice, {})
        if isinstance(ctx_size, dict):
            first_model = list(ctx_size.keys())[0]
            ctx_size = ctx_size[first_model]
            
            # Prepare dropdown choices based on provider
            if choice == "OpenAI ChatGPT":
                model_choices = list(MODEL_CONTEXT_SIZES["OpenAI ChatGPT"].keys())
                return [
                    gr.update(visible=False),  # hf_options
                    gr.update(visible=False),  # groq_options
                    gr.update(visible=True),   # openai_options
                    gr.update(value=ctx_size), # context_size
                    gr.Dropdown(choices=model_choices, value=first_model)  # openai_model
                ]
            elif choice == "HuggingFace Inference":
                model_choices = list(model_registry.hf_models.keys())
                return [
                    gr.update(visible=True),   # hf_options
                    gr.update(visible=False),  # groq_options
                    gr.update(visible=False),  # openai_options
                    gr.update(value=ctx_size), # context_size
                    gr.Dropdown(choices=model_choices, value="Phi-3 Mini 4K")  # openai_model (not used)
                ]
            elif choice == "Groq API":
                model_choices = list(model_registry.groq_models.keys())
                return [
                    gr.update(visible=False),  # hf_options
                    gr.update(visible=True),   # groq_options
                    gr.update(visible=False),  # openai_options
                    gr.update(value=ctx_size), # context_size
                    gr.Dropdown(choices=model_choices, value=model_choices[0] if model_choices else None)  # openai_model (not used)
                ]
        
        # Default return for "Clipboard only" or other options
        return [
            gr.update(visible=False),  # hf_options
            gr.update(visible=False),  # groq_options
            gr.update(visible=False),  # openai_options
            gr.update(value=4096),    # context_size
            gr.Dropdown(choices=[])    # openai_model (not used)
        ]
    
    # PDF Processing Handlers
    def handle_pdf_process(pdf, fmt, ctx_size):  # Remove md_eng parameter
        if not pdf:
            return "Please upload a PDF file.", "", "", [], gr.update(choices=[], value=None), None

        try:
            text = extract_text_from_pdf(pdf.name, format_type=fmt)  # Just use format_type
            if text.startswith("Error"):
                return text, "", "", [], gr.update(choices=[], value=None), None

            # The important part: still do snippets processing
            snippets_list = split_into_snippets(text, ctx_size)
            snippet_choices = update_snippet_choices(snippets_list)

            with tempfile.NamedTemporaryFile(delete=False, mode='w', suffix=f'.{fmt}') as f:
                f.write(text)
                download_file = f.name

            return (
                f"PDF processed successfully! Generated {len(snippets_list)} snippets.",
                text,
                text,
                snippets_list,
                gr.update(choices=snippet_choices, value=snippet_choices[0] if snippet_choices else None),
                download_file
            )
        except Exception as e:
            error_msg = f"Error processing PDF: {str(e)}"
            logging.error(error_msg)
            return error_msg, "", "", [], gr.update(choices=[], value=None), None

    def handle_snippet_selection(choice, snippets_list): # Add download_snippet output
        """Handle snippet selection, update prompt, and provide snippet download."""
        if not snippets_list:
            return "No snippets available.", "", None  # Return None for download

        try:
            idx = get_snippet_index(choice)
            selected_snippet = snippets_list[idx]

            with tempfile.NamedTemporaryFile(delete=False, mode='w', suffix='.txt') as f:
                f.write(selected_snippet)
                snippet_download_file = f.name  # Store the file path

            return (
                f"Selected snippet {idx + 1}",
                selected_snippet,
                snippet_download_file # Return file for download
            )

        except Exception as e:
            error_msg = f"Error selecting snippet: {str(e)}"
            logging.error(error_msg)
            return (
                error_msg,
                "",
                None
            )
        
    # Copy button handlers
    def handle_prompt_generation(snippet_text, template, snippet_choice, snippets_list):
        try:
            if not snippets_list:
                return "No text available.", "", None
                
            idx = get_snippet_index(snippet_choice)
            base_prompt = template if template else "Summarize the following text:"
            content = snippets_list[idx]
            
            prompt = f"{base_prompt}\n---\n{content}\n---"
            
            # Save prompt for download
            with tempfile.NamedTemporaryFile(delete=False, mode='w', suffix='.txt') as f:
                f.write(prompt)
                download_file = f.name
                
            return "Prompt generated!", prompt, download_file # Return the file for download_prompt

        except Exception as e:
            logging.error(f"Error generating prompt: {e}")
            return f"Error: {str(e)}", "", None

    def handle_copy_action(text):
        """Handle copy to clipboard action"""
        return {
            progress_status: gr.update(value="Text copied to clipboard!", visible=True)
        }

    # Connect all event handlers
    # Core event handlers
    process_button.click(
        handle_pdf_process,
        inputs=[pdf_input, format_type, context_size],
        outputs=[progress_status, processed_text, pdf_content, snippets, snippet_selector, download_full_text]
    )

    generate_prompt_btn.click(
        handle_prompt_generation,
        inputs=[generated_prompt, custom_prompt, snippet_selector, snippets],
        outputs=[progress_status, generated_prompt, download_prompt]
    )

    # Snippet handling
    snippet_selector.change(
        handle_snippet_selection,
        inputs=[snippet_selector, snippets],
        outputs=[progress_status, generated_prompt, download_snippet] # Connect download_snippet
    )

    # Model selection
    model_choice.change(
        handle_model_selection,
        inputs=[model_choice],
        outputs=[
            hf_options,
            groq_options,
            openai_options,
            context_size,
            openai_model
        ]
    )

    hf_model.change(
        toggle_custom_model,
        inputs=[hf_model],
        outputs=[hf_custom_model]
    )

    groq_model.change(
        handle_groq_model_change,
        inputs=[groq_model],
        outputs=[context_size]
    )

    def download_file(content: str, prefix: str) -> List[str]:
        if not content:
            return []
        try:
            filename = f"{prefix}_{int(time.time())}.txt"  # Add timestamp
            with tempfile.NamedTemporaryFile(delete=False, mode='w', suffix='.txt', prefix=filename) as f:
                f.write(content)
                return [f.name]
        except Exception as e:
            logging.error(f"Error creating download file: {e}")
            return []

    # ChatGPT handler
    open_chatgpt_button.click(
        fn=lambda: "window.open('https://chat.openai.com/', '_blank'); return 'Opened ChatGPT in new tab';",
        inputs=None,
        outputs=progress_status,
        js=True
    )

    # Model processing
    send_to_model_btn.click(
        send_to_model,
        inputs=[
            generated_prompt,
            model_choice,
            hf_model,
            hf_custom_model,
            hf_api_key,
            groq_model,
            groq_api_key,
            openai_api_key,
            openai_model
        ],
        outputs=[summary_output, download_summary]
    )

    groq_refresh_btn.click(
        refresh_groq_models_list,
        outputs=[groq_model]
    )

    # Instructions
    gr.Markdown("""
    ### πŸ“Œ Instructions:
    1. Upload a PDF document
    2. Choose output format and context window size
    3. Select snippet number (default: 1) or enter custom prompt
    4. Select your preferred model in case you want to proceed directly (or continue with 5):
       - OpenAI ChatGPT: Manual copy/paste workflow
       - HuggingFace Inference: Direct API integration
       - Groq API: High-performance inference
    5. Click 'Process PDF' to generate summary
    6. Use 'Copy Prompt' and, optionally, 'Open ChatGPT' for manual processing
    7. Download generated files as needed
    """)

# Launch the interface
if __name__ == "__main__":
    demo.launch(share=False, debug=True)