Spaces:
Running
Running
File size: 43,927 Bytes
9d8df86 38b3cc5 d2a93c9 9d8df86 fd11110 9d8df86 ff1b4d3 897fb70 c2a46b3 38b3cc5 9d8df86 897fb70 ff1b4d3 001e628 ff1b4d3 d89b36d ffe0a95 a8eafe1 ffe0a95 d89b36d 897fb70 001e628 ffe0a95 001e628 ffe0a95 001e628 897fb70 fd11110 897fb70 ff1b4d3 39a451a fd11110 38b3cc5 fd11110 39a451a fd11110 38b3cc5 fd11110 9d8df86 897fb70 9d8df86 897fb70 9d8df86 897fb70 9d8df86 ff1b4d3 9d8df86 ff1b4d3 9d8df86 ff1b4d3 9d8df86 f97296a a8eafe1 d021055 5246944 f97296a 28e0649 a8eafe1 28e0649 f97296a a8eafe1 28e0649 a8eafe1 d89b36d f97296a 30d63b9 5246944 a8eafe1 5246944 a8eafe1 8d039b9 a8eafe1 5246944 8d039b9 f97296a 5246944 8d039b9 f97296a 5246944 a8eafe1 8d039b9 895ad65 5246944 f97296a 030aaa2 f97296a 8d039b9 f97296a 5246944 a8eafe1 5246944 a8eafe1 28e0649 a8eafe1 28e0649 f97296a 28e0649 f97296a 897fb70 f97296a a8eafe1 001e628 a8eafe1 f97296a a8eafe1 ffe0a95 f97296a ffe0a95 a8eafe1 ffe0a95 a8eafe1 f97296a a8eafe1 d89b36d 8b246e4 0536b51 d89b36d 0536b51 cb22f6c d89b36d cb22f6c d89b36d 897fb70 d89b36d 897fb70 d89b36d 897fb70 d89b36d 897fb70 d89b36d 897fb70 d89b36d 897fb70 cb22f6c 897fb70 d89b36d 897fb70 9d8df86 d89b36d 9d8df86 0536b51 d89b36d 897fb70 9d8df86 897fb70 38b3cc5 d89b36d ff1b4d3 d89b36d cb22f6c d89b36d 39a451a d89b36d 0536b51 d89b36d 0536b51 d89b36d 0536b51 d89b36d a077d87 9d8df86 d89b36d cb22f6c d89b36d a077d87 d89b36d 001e628 a0e7edc 001e628 c2a46b3 d89b36d 001e628 d89b36d 001e628 d89b36d a077d87 9d8df86 d89b36d 9d8df86 d89b36d 9d8df86 897fb70 cb22f6c 897fb70 bfc0f42 0536b51 897fb70 d89b36d 001e628 d2a93c9 001e628 d2a93c9 001e628 d2a93c9 001e628 d2a93c9 001e628 d2a93c9 0536b51 d2a93c9 0536b51 d89b36d 39a451a d89b36d b74b8ba d89b36d 39a451a d89b36d b74b8ba 39a451a fd11110 b74b8ba fd11110 d89b36d b74b8ba 8b246e4 fd11110 8b246e4 b74b8ba 8b246e4 d89b36d fd11110 d89b36d a077d87 d89b36d a077d87 d89b36d a077d87 d89b36d a077d87 8b246e4 a077d87 8b246e4 a077d87 d89b36d 8b246e4 d89b36d 0536b51 d89b36d 0536b51 d89b36d 0536b51 d89b36d a077d87 d89b36d a077d87 d89b36d 0536b51 d89b36d a077d87 d89b36d a077d87 d89b36d a077d87 d89b36d 9d8df86 d89b36d 9d8df86 d89b36d 9d8df86 8b246e4 d2a93c9 8b246e4 9d8df86 897fb70 d89b36d 897fb70 0536b51 001e628 0536b51 d89b36d 558d6bc cb22f6c d89b36d cb22f6c f97296a 9d8df86 f97296a 9d8df86 897fb70 d89b36d ff1b4d3 9d8df86 ff1b4d3 cb22f6c 897fb70 ff1b4d3 cb22f6c ff1b4d3 9d8df86 38b3cc5 9d8df86 38b3cc5 9d8df86 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 |
import os
import re
import tempfile
import requests
import gradio as gr
print(f"Gradio version: {gr.__version__}")
from PyPDF2 import PdfReader
import fitz # pymupdf
import logging
import webbrowser
from huggingface_hub import InferenceClient
from typing import Dict, List, Optional, Tuple
import time
from groq import Groq # Import the Groq client
# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# Constants
CONTEXT_SIZES = {
"4K": 4096,
"8K": 8192,
"32K": 32768,
"64K": 65536,
"128K": 131072
}
MODEL_CONTEXT_SIZES = {
"Clipboard only": 4096,
"OpenAI ChatGPT": {
"gpt-3.5-turbo": 16385,
"gpt-3.5-turbo-0125": 16385,
"gpt-3.5-turbo-1106": 16385,
"gpt-3.5-turbo-instruct": 4096,
"gpt-4": 8192,
"gpt-4-0314": 8192,
"gpt-4-0613": 8192,
"gpt-4-turbo": 128000,
"gpt-4-turbo-2024-04-09": 128000,
"gpt-4-turbo-preview": 128000,
"gpt-4-0125-preview": 128000,
"gpt-4-1106-preview": 128000,
"gpt-4o": 128000,
"gpt-4o-2024-11-20": 128000,
"gpt-4o-2024-08-06": 128000,
"gpt-4o-2024-05-13": 128000,
"chatgpt-4o-latest": 128000,
"gpt-4o-mini": 128000,
"gpt-4o-mini-2024-07-18": 128000,
"gpt-4o-realtime-preview": 128000,
"gpt-4o-realtime-preview-2024-10-01": 128000,
"gpt-4o-audio-preview": 128000,
"gpt-4o-audio-preview-2024-10-01": 128000,
"o1-preview": 128000,
"o1-preview-2024-09-12": 128000,
"o1-mini": 128000,
"o1-mini-2024-09-12": 128000,
},
"HuggingFace Inference": {
"microsoft/phi-3-mini-4k-instruct": 4096,
"microsoft/Phi-3-mini-128k-instruct": 131072, # Added Phi-3 128k
"HuggingFaceH4/zephyr-7b-beta": 8192,
"deepseek-ai/DeepSeek-Coder-V2-Instruct": 8192,
"meta-llama/Llama-3-8b-Instruct": 8192,
"mistralai/Mistral-7B-Instruct-v0.3": 32768,
"NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO": 32768,
"microsoft/Phi-3.5-mini-instruct": 4096,
"HuggingFaceTB/SmolLM2-1.7B-Instruct": 2048,
"google/gemma-2-2b-it": 2048,
"openai-community/gpt2": 1024,
"microsoft/phi-2": 2048,
"TinyLlama/TinyLlama-1.1B-Chat-v1.0": 2048
},
"Groq API": {
"gemma2-9b-it": 8192,
"gemma-7b-it": 8192,
"llama-3.3-70b-versatile": 131072,
"llama-3.1-70b-versatile": 131072, # Deprecated
"llama-3.1-8b-instant": 131072,
"llama-guard-3-8b": 8192,
"llama3-70b-8192": 8192,
"llama3-8b-8192": 8192,
"mixtral-8x7b-32768": 32768,
"llama3-groq-70b-8192-tool-use-preview": 8192,
"llama3-groq-8b-8192-tool-use-preview": 8192,
"llama-3.3-70b-specdec": 131072,
"llama-3.1-70b-specdec": 131072,
"llama-3.2-1b-preview": 131072,
"llama-3.2-3b-preview": 131072,
},
"Cohere API": {
"command-r-plus-08-2024": 131072, # 128k
"command-r-plus-04-2024": 131072,
"command-r-plus": 131072,
"command-r-08-2024": 131072,
"command-r-03-2024": 131072,
"command-r": 131072,
"command": 4096,
"command-nightly": 131072,
"command-light": 4096,
"command-light-nightly": 4096,
"c4ai-aya-expanse-8b": 8192,
"c4ai-aya-expanse-32b": 131072,
}
}
class ModelRegistry:
def __init__(self):
# HuggingFace Models
self.hf_models = {
"Phi-3 Mini 4K": "microsoft/phi-3-mini-4k-instruct",
"Phi-3 Mini 128k": "microsoft/Phi-3-mini-128k-instruct", # Added
"Zephyr 7B Beta": "HuggingFaceH4/zephyr-7b-beta",
"DeepSeek Coder V2": "deepseek-ai/DeepSeek-Coder-V2-Instruct",
"Meta Llama 3.1 8B": "meta-llama/Llama-3-8b-Instruct",
"Meta Llama 3.1 70B": "meta-llama/Meta-Llama-3.1-70B-Instruct",
"Mixtral 7B": "mistralai/Mistral-7B-Instruct-v0.3",
"Nous-Hermes": "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
"Cohere Command R+": "CohereForAI/c4ai-command-r-plus",
"Aya 23-35B": "CohereForAI/aya-23-35B",
"Phi-3.5 Mini": "microsoft/Phi-3.5-mini-instruct", # Added
"SmolLM2 1.7B": "HuggingFaceTB/SmolLM2-1.7B-Instruct", # Added
"Gemma 2 2B": "google/gemma-2-2b-it", # Added
"GPT2": "openai-community/gpt2", # Added
"Phi-2": "microsoft/phi-2", # Added
"TinyLlama 1.1B": "TinyLlama/TinyLlama-1.1B-Chat-v1.0", # Added
"Custom Model": "" # Keep for custom models
}
# Default Groq Models
self.default_groq_models = { # Keep defaults in case fetching fails
"gemma2-9b-it": "gemma2-9b-it",
"gemma-7b-it": "gemma-7b-it",
"llama-3.3-70b-versatile": "llama-3.3-70b-versatile",
"llama-3.1-70b-versatile": "llama-3.1-70b-versatile", # Deprecated
"llama-3.1-8b-instant": "llama-3.1-8b-instant",
"llama-guard-3-8b": "llama-guard-3-8b",
"llama3-70b-8192": "llama3-70b-8192",
"llama3-8b-8192": "llama3-8b-8192",
"mixtral-8x7b-32768": "mixtral-8x7b-32768",
"llama3-groq-70b-8192-tool-use-preview": "llama3-groq-70b-8192-tool-use-preview",
"llama3-groq-8b-8192-tool-use-preview": "llama3-groq-8b-8192-tool-use-preview",
"llama-3.3-70b-specdec": "llama-3.3-70b-specdec",
"llama-3.1-70b-specdec": "llama-3.1-70b-specdec",
"llama-3.2-1b-preview": "llama-3.2-1b-preview",
"llama-3.2-3b-preview": "llama-3.2-3b-preview",
}
self.groq_models = self._fetch_groq_models()
def _fetch_groq_models(self) -> Dict[str, str]:
"""Fetch available Groq models with proper error handling"""
try:
groq_api_key = os.getenv('GROQ_API_KEY')
if not groq_api_key:
logging.warning("No GROQ_API_KEY found in environment")
return self.default_groq_models
headers = {
"Authorization": f"Bearer {groq_api_key}",
"Content-Type": "application/json"
}
response = requests.get(
"https://api.groq.com/openai/v1/models",
headers=headers,
timeout=10
)
if response.status_code == 200:
models = response.json().get("data", [])
model_dict = {model["id"]: model["id"] for model in models}
# Merge with defaults to ensure all models are available
return {**self.default_groq_models, **model_dict}
else:
logging.error(f"Failed to fetch Groq models: {response.status_code}")
return self.default_groq_models
except requests.exceptions.Timeout:
logging.error("Timeout while fetching Groq models")
return self.default_groq_models
except Exception as e:
logging.error(f"Error fetching Groq models: {e}")
return self.default_groq_models
def _get_default_groq_models(self) -> Dict[str, str]:
"""Return default Groq models"""
return self.default_groq_models
def refresh_groq_models(self) -> Dict[str, str]:
"""Refresh the list of available Groq models"""
self.groq_models = self._fetch_groq_models()
return self.groq_models
class PDFProcessor:
"""Handles PDF conversion to text and markdown using different methods"""
@staticmethod
def txt_convert(pdf_path: str) -> str:
"""Basic text extraction using PyPDF2"""
try:
reader = PdfReader(pdf_path)
text = ""
for page_num, page in enumerate(reader.pages, start=1):
page_text = page.extract_text()
if page_text:
text += page_text + "\n"
else:
logging.warning(f"No text found on page {page_num}.")
return text
except Exception as e:
logging.error(f"Error in txt conversion: {e}")
return f"Error: {str(e)}"
@staticmethod
def md_convert_with_pymupdf(pdf_path: str) -> str:
"""Convert PDF to Markdown using pymupdf"""
try:
doc = fitz.open(pdf_path)
markdown_text = []
for page in doc:
blocks = page.get_text("dict")["blocks"]
for block in blocks:
if "lines" in block:
for line in block["lines"]:
for span in line["spans"]:
font_size = span["size"]
content = span["text"]
font_flags = span["flags"] # Contains bold, italic info
# Handle headers based on font size
if font_size > 20:
markdown_text.append(f"# {content}\n")
elif font_size > 16:
markdown_text.append(f"## {content}\n")
elif font_size > 14:
markdown_text.append(f"### {content}\n")
else:
# Handle bold and italic
if font_flags & 2**4: # Bold
content = f"**{content}**"
if font_flags & 2**1: # Italic
content = f"*{content}*"
markdown_text.append(content)
markdown_text.append(" ") # Space between spans
markdown_text.append("\n") # Newline between lines
# Add extra newline between blocks for paragraphs
markdown_text.append("\n")
doc.close()
return "".join(markdown_text)
except Exception as e:
logging.error(f"Error in pymupdf conversion: {e}")
return f"Error: {str(e)}"
# Initialize model registry
model_registry = ModelRegistry()
def extract_text_from_pdf(pdf_path: str, format_type: str = "txt") -> str:
"""
Extract and format text from PDF using different processors based on format.
Args:
pdf_path: Path to PDF file
format_type: Either 'txt' or 'md'
Returns:
Formatted text content
"""
processor = PDFProcessor()
try:
if format_type == "txt":
return processor.txt_convert(pdf_path)
elif format_type == "md":
return processor.md_convert_with_pymupdf(pdf_path)
else:
return f"Error: Unsupported format type: {format_type}"
except Exception as e:
logging.error(f"Error in PDF conversion: {e}")
return f"Error: {str(e)}"
def format_content(text: str, format_type: str) -> str:
"""Format extracted text according to specified format."""
if format_type == 'txt':
return text
elif format_type == 'md':
paragraphs = text.split('\n\n')
return '\n\n'.join(paragraphs)
elif format_type == 'html':
paragraphs = text.split('\n\n')
return ''.join([f'<p>{para.strip()}</p>' for para in paragraphs if para.strip()])
else:
logging.error(f"Unsupported format: {format_type}")
return f"Unsupported format: {format_type}"
def split_into_snippets(text: str, context_size: int) -> List[str]:
"""Split text into manageable snippets based on context size."""
sentences = re.split(r'(?<=[.!?]) +', text)
snippets = []
current_snippet = ""
for sentence in sentences:
if len(current_snippet) + len(sentence) + 1 > context_size:
if current_snippet:
snippets.append(current_snippet.strip())
current_snippet = sentence + " "
else:
snippets.append(sentence.strip())
current_snippet = ""
else:
current_snippet += sentence + " "
if current_snippet.strip():
snippets.append(current_snippet.strip())
return snippets
def build_prompts(snippets: List[str], prompt_instruction: str, custom_prompt: Optional[str], snippet_num: Optional[int] = None) -> str:
"""Build formatted prompts from text snippets."""
if snippet_num is not None:
if 1 <= snippet_num <= len(snippets):
selected_snippets = [snippets[snippet_num - 1]]
else:
return f"Error: Invalid snippet number. Please choose between 1 and {len(snippets)}."
else:
selected_snippets = snippets
prompts = []
base_prompt = custom_prompt if custom_prompt else prompt_instruction
for idx, snippet in enumerate(selected_snippets, start=1):
if len(selected_snippets) > 1:
prompt_header = f"{base_prompt} Part {idx} of {len(selected_snippets)}: ---\n"
else:
prompt_header = f"{base_prompt} ---\n"
framed_prompt = f"{prompt_header}{snippet}\n---"
prompts.append(framed_prompt)
return "\n\n".join(prompts)
def send_to_model(prompt, model_selection, hf_model_choice, hf_custom_model, hf_api_key,
groq_model_choice, groq_api_key, openai_api_key, openai_model_choice):
"""Wrapper function for send_to_model_impl with comprehensive error handling."""
logging.info("send to model starting...")
if not prompt or not prompt.strip():
return "Error: No prompt provided", None
try:
logging.info("sending to model preparation.")
# Basic input validation
valid_selections = ["Clipboard only", "HuggingFace Inference", "Groq API", "OpenAI ChatGPT", "Cohere API"]
if model_selection not in valid_selections:
return "Error: Invalid model selection", None
# Model-specific validation
if model_selection == "Groq API" and not groq_api_key:
return "Error: Groq API key required", None
elif model_selection == "OpenAI ChatGPT" and not openai_api_key:
return "Error: OpenAI API key required", None
# Call implementation with error handling
try:
logging.info("calling send_to_model_impl.")
summary, download_file = send_to_model_impl(
prompt=prompt.strip(),
model_selection=model_selection,
hf_model_choice=hf_model_choice,
hf_custom_model=hf_custom_model,
hf_api_key=hf_api_key,
groq_model_choice=groq_model_choice,
groq_api_key=groq_api_key,
openai_api_key=openai_api_key,
openai_model_choice=openai_model_choice
)
logging.info("summary received:", summary)
if summary is None or not isinstance(summary, str):
return "Error: No response from model", None
return summary, download_file
except Exception as impl_error:
error_msg = str(impl_error)
if not error_msg:
error_msg = "Unknown error occurred in model implementation"
logging.error(f"Model implementation error: {error_msg}")
return f"Error: {error_msg}", None
except Exception as e:
error_msg = str(e)
if not error_msg:
error_msg = "Unknown error occurred"
logging.error(f"Error in send_to_model: {error_msg}")
return f"Error: {error_msg}", None
finally:
logging.info("send to model completed.")
def send_to_model_impl(prompt, model_selection, hf_model_choice, hf_custom_model, hf_api_key,
groq_model_choice, groq_api_key, openai_api_key, openai_model_choice):
"""Implementation of model sending with improved error handling."""
logging.info("send to model impl commencing...")
try:
if model_selection == "Clipboard only":
return "Text copied to clipboard. Use paste for processing.", None
if model_selection == "HuggingFace Inference":
# First try without API key
model_id = hf_custom_model if hf_model_choice == "Custom Model" else model_registry.hf_models[hf_model_choice]
summary = send_to_hf_inference(prompt, model_id)
if summary.startswith("Error"):
if hf_api_key: # If first try failed and we have an API key, try with it
summary = send_to_hf_inference(prompt, model_id, hf_api_key)
elif model_selection == "Groq API":
summary = send_to_groq(prompt, groq_model_choice, groq_api_key)
elif model_selection == "OpenAI ChatGPT":
summary = send_to_openai(prompt, openai_api_key, model=openai_model_choice)
elif model_selection == "Cohere API":
summary = send_to_cohere(prompt)
else:
return "Error: Invalid model selection", None
# Validate response
if not summary or not isinstance(summary, str):
return "Error: Invalid response from model", None
# Create download file for valid responses
if not summary.startswith("Error"):
with tempfile.NamedTemporaryFile(delete=False, mode='w', suffix='.txt') as f:
f.write(summary)
return summary, f.name
return summary, None
except Exception as e:
error_msg = str(e)
if not error_msg:
error_msg = "Unknown error occurred"
logging.error(f"Error in send_to_model_impl: {error_msg}")
return f"Error: {error_msg}", None
def send_to_hf_inference(prompt: str, model_name: str, api_key: str = None) -> str:
"""Send prompt to HuggingFace Inference API with optional authentication."""
try:
client = InferenceClient(token=api_key) if api_key else InferenceClient()
response = client.text_generation(
prompt,
model=model_name,
max_new_tokens=500,
temperature=0.7,
top_p=0.95,
repetition_penalty=1.1
)
return str(response)
except Exception as e:
logging.error(f"HuggingFace inference error: {e}")
return f"Error with HuggingFace inference: {str(e)}" # Return error message instead of raising
def send_to_hf_inference_old(prompt: str, model_name: str, api_key: str = None) -> str:
"""Send prompt to HuggingFace Inference API with optional authentication."""
try:
# First try without authentication
try:
client = InferenceClient() # No token
response = client.text_generation(
prompt,
model=model_name,
max_new_tokens=500,
temperature=0.7,
top_p=0.95,
repetition_penalty=1.1
)
return str(response)
except Exception as public_error:
logging.info(f"Public inference failed: {public_error}")
# If that fails and we have an API key, try with authentication
if api_key:
client = InferenceClient(token=api_key)
response = client.text_generation(
prompt,
model=model_name,
max_new_tokens=500,
temperature=0.7,
top_p=0.95,
repetition_penalty=1.1
)
return str(response)
else:
# If we don't have an API key, inform the user they need one
return "Error: This model requires authentication. Please enter your HuggingFace API key."
except Exception as e:
logging.error(f"HuggingFace inference error: {e}")
return f"Error with HuggingFace inference: {str(e)}"
def send_to_groq(prompt: str, model_name: str, api_key: str) -> str:
"""Send prompt to Groq API with better error handling."""
try:
client = Groq(api_key=api_key)
response = client.chat.completions.create(
model=model_name,
messages=[{
"role": "user",
"content": prompt
}],
temperature=0.7,
max_tokens=500,
top_p=0.95
)
return response.choices[0].message.content
except Exception as e:
logging.error(f"Groq API error: {e}")
raise # Re-raise to be handled by caller
def send_to_openai(prompt: str, api_key: str, model: str = "gpt-3.5-turbo") -> str:
"""Send prompt to OpenAI API."""
try:
from openai import OpenAI
client = OpenAI(api_key=api_key)
response = client.chat.completions.create(
model=model,
messages=[
{"role": "system", "content": "You are a helpful assistant that provides detailed responses."},
{"role": "user", "content": prompt}
],
temperature=0.7,
max_tokens=500,
top_p=0.95
)
if response.choices and len(response.choices) > 0:
return response.choices[0].message.content
else:
raise Exception("No response generated")
except ImportError:
raise Exception("Please install the latest version of openai package (pip install --upgrade openai)")
except Exception as e:
logging.error(f"OpenAI API error: {e}")
raise # Re-raise to be handled by caller
def send_to_cohere(prompt: str, api_key: str = None) -> str:
"""Send prompt to Cohere API with optional authentication."""
try:
import cohere
client = cohere.Client(api_key) if api_key else cohere.Client()
response = client.chat(
message=prompt,
temperature=0.7,
max_tokens=500,
)
if hasattr(response, 'text'):
return response.text
else:
return "Error: No response text from Cohere"
except Exception as e:
logging.error(f"Cohere API error: {e}")
return f"Error with Cohere API: {str(e)}" # Return error message instead of raising
def copy_text_js(element_id: str) -> str:
return f"""function() {{
let textarea = document.getElementById('{element_id}');
if (!textarea) return 'Element not found';
textarea.select();
try {{
document.execCommand('copy');
return 'Copied to clipboard!';
}} catch(err) {{
return 'Failed to copy: ' + err;
}}
}}"""
def open_chatgpt() -> str:
"""Open ChatGPT in new browser tab"""
return """window.open('https://chat.openai.com/', '_blank');"""
def process_pdf(pdf, fmt, ctx_size):
"""Process PDF and return text and snippets"""
try:
if not pdf:
return "Please upload a PDF file.", "", [], None
# Extract text
text = extract_text_from_pdf(pdf.name)
if text.startswith("Error"):
return text, "", [], None
# Format content
formatted_text = format_content(text, fmt)
# Split into snippets
snippets = split_into_snippets(formatted_text, ctx_size)
# Save full text for download
with tempfile.NamedTemporaryFile(delete=False, mode='w', suffix='.txt') as text_file:
text_file.write(formatted_text)
snippet_choices = [f"Snippet {i+1} of {len(snippets)}" for i in range(len(snippets))]
return (
"PDF processed successfully!",
formatted_text,
snippets,
snippet_choices,
[text_file.name]
)
except Exception as e:
logging.error(f"Error processing PDF: {e}")
return f"Error processing PDF: {str(e)}", "", [], None
def generate_prompt(text, template, snippet_idx=None):
"""Generate prompt from text or selected snippet"""
try:
if not text:
return "No text available.", "", None
default_prompt = "Summarize the following text:"
prompt_template = template if template else default_prompt
if isinstance(text, list):
# If text is list of snippets
if snippet_idx is not None:
if 0 <= snippet_idx < len(text):
content = text[snippet_idx]
else:
return "Invalid snippet index.", "", None
else:
content = "\n\n".join(text)
else:
content = text
prompt = f"{prompt_template}\n---\n{content}\n---"
# Save prompt for download
with tempfile.NamedTemporaryFile(delete=False, mode='w', suffix='.txt') as prompt_file:
prompt_file.write(prompt)
return "Prompt generated!", prompt, [prompt_file.name]
except Exception as e:
logging.error(f"Error generating prompt: {e}")
return f"Error generating prompt: {str(e)}", "", None
# Main Interface
with gr.Blocks(css="""
.gradio-container {max-width: 90%; margin: 0 auto;}
@media (max-width: 768px) {.gradio-container {max-width: 98%; padding: 10px;} .gr-row {flex-direction: column;} .gr-col {width: 100%; margin-bottom: 10px;}}
""") as demo:
# State variables
pdf_content = gr.State("")
snippets = gr.State([])
# Header
gr.Markdown("# π Smart PDF Summarizer")
gr.Markdown("Upload a PDF document and get AI-powered summaries using various AI models.")
with gr.Tabs() as tabs:
# Tab 1: PDF Processing
with gr.Tab("1οΈβ£ PDF Processing"):
with gr.Row():
with gr.Column(scale=1):
pdf_input = gr.File(
label="π Upload PDF",
file_types=[".pdf"]
)
format_type = gr.Radio(
choices=["txt", "md"],
value="txt",
label="π Output Format"
)
context_size = gr.Slider(
minimum=1000,
maximum=200000,
step=1000,
value=4096,
label="Context Size"
)
gr.Markdown("### Context Size")
with gr.Row():
for size_name, size_value in CONTEXT_SIZES.items():
gr.Button(
size_name,
size="sm",
scale=1
).click(
lambda v=size_value: gr.update(value=v),
None,
context_size
)
process_button = gr.Button("π Process PDF", variant="primary")
with gr.Column(scale=1):
progress_status = gr.Textbox(
label="Status",
interactive=False,
show_label=True,
visible=True # Ensure error messages are always visible
)
processed_text = gr.Textbox(
label="Processed Text",
lines=10,
max_lines=50,
show_copy_button=True
)
download_full_text = gr.File(label="π₯ Download Full Text")
# Tab 2: Snippet Selection
with gr.Tab("2οΈβ£ Snippet Selection"):
with gr.Row():
with gr.Column(scale=1):
snippet_selector = gr.Dropdown(
label="Select Snippet",
choices=[],
interactive=True
)
custom_prompt = gr.Textbox(
label="βοΈ Custom Prompt Template",
placeholder="Enter your custom prompt here...",
lines=2
)
generate_prompt_btn = gr.Button("Generate Prompt", variant="primary")
with gr.Column(scale=1):
generated_prompt = gr.Textbox(
label="π Generated Prompt",
lines=10,
max_lines=50,
show_copy_button=True,
elem_id="generated_prompt" # Add this
)
with gr.Row():
download_prompt = gr.File(label="π₯ Download Prompt")
download_snippet = gr.File(label="π₯ Download Selected Snippet")
# Tab 3: Model Processing
with gr.Tab("3οΈβ£ Model Processing"):
with gr.Row():
with gr.Column(scale=1):
model_choice = gr.Radio(
choices=list(MODEL_CONTEXT_SIZES.keys()),
value="Clipboard only",
label="π€ Provider Selection"
)
with gr.Column(visible=False) as openai_options:
openai_model = gr.Dropdown(
choices=list(MODEL_CONTEXT_SIZES["OpenAI ChatGPT"].keys()),
value="gpt-3.5-turbo",
label="OpenAI Model"
)
openai_api_key = gr.Textbox(
label="π OpenAI API Key",
type="password"
)
with gr.Column(visible=False) as hf_options:
hf_model = gr.Dropdown(
choices=list(model_registry.hf_models.keys()),
label="π§ HuggingFace Model",
value="Phi-3 Mini 4K"
)
hf_custom_model = gr.Textbox( # This needs to be defined before being used
label="Custom Model ID",
placeholder="Enter custom model ID...",
visible=False
)
hf_api_key = gr.Textbox(
label="π HuggingFace API Key",
type="password"
)
with gr.Column(visible=False) as groq_options:
groq_model = gr.Dropdown(
choices=list(model_registry.groq_models.keys()), # Use model_registry.groq_models
value=list(model_registry.groq_models.keys())[0] if model_registry.groq_models else None, # Set a default value if available
label="Groq Model"
)
groq_api_key = gr.Textbox(
label="π Groq API Key",
type="password"
)
groq_refresh_btn = gr.Button("π Refresh Groq Models") # Add refresh button
send_to_model_btn = gr.Button("π Send to Model", variant="primary")
open_chatgpt_button = gr.Button("π Open ChatGPT")
with gr.Column(scale=1):
summary_output = gr.Textbox(
label="π Summary",
lines=15,
max_lines=50,
show_copy_button=True,
elem_id="summary_output" # Add this
)
with gr.Row():
download_summary = gr.File(label="π₯ Download Summary")
# Hidden components for file handling
download_files = gr.Files(label="π₯ Downloads", visible=False)
# Event Handlers
def update_context_size(size: int) -> None:
"""Update context size slider with validation"""
if not isinstance(size, (int, float)):
size = 4096 # Default size
return gr.update(value=int(size))
def get_model_context_size(choice: str, groq_model: str = None) -> int:
"""Get context size for model with better defaults"""
if choice == "Groq API" and groq_model:
return MODEL_CONTEXT_SIZES["Groq API"].get(groq_model, 4096)
elif choice == "OpenAI ChatGPT":
return 4096
elif choice == "HuggingFace Inference":
return 4096
return 32000 # Safe default
def update_snippet_choices(snippets_list: List[str]) -> List[str]:
"""Create formatted snippet choices"""
return [f"Snippet {i+1} of {len(snippets_list)}" for i in range(len(snippets_list))]
def get_snippet_index(choice: str) -> int:
"""Extract snippet index from choice string"""
if not choice:
return 0
try:
return int(choice.split()[1]) - 1
except:
return 0
def toggle_model_options(choice):
return (
gr.update(visible=choice == "HuggingFace Inference"),
gr.update(visible=choice == "Groq API"),
gr.update(visible=choice == "OpenAI ChatGPT")
)
def refresh_groq_models_list():
try:
with gr.Progress() as progress:
progress(0, "Refreshing Groq models...")
updated_models = model_registry.refresh_groq_models()
progress(1, "Complete!")
return gr.update(choices=list(updated_models.keys()))
except Exception as e:
logging.error(f"Error refreshing models: {e}")
return gr.update()
def toggle_custom_model(model_name):
return gr.update(visible=model_name == "Custom Model")
def handle_groq_model_change(model_name):
"""Handle Groq model selection change"""
return update_context_size("Groq API", model_name)
def handle_model_selection(choice):
"""Handle model selection and update UI"""
ctx_size = MODEL_CONTEXT_SIZES.get(choice, {})
if isinstance(ctx_size, dict):
first_model = list(ctx_size.keys())[0]
ctx_size = ctx_size[first_model]
# Prepare dropdown choices based on provider
if choice == "OpenAI ChatGPT":
model_choices = list(MODEL_CONTEXT_SIZES["OpenAI ChatGPT"].keys())
return [
gr.update(visible=False), # hf_options
gr.update(visible=False), # groq_options
gr.update(visible=True), # openai_options
gr.update(value=ctx_size), # context_size
gr.Dropdown(choices=model_choices, value=first_model) # openai_model
]
elif choice == "HuggingFace Inference":
model_choices = list(model_registry.hf_models.keys())
return [
gr.update(visible=True), # hf_options
gr.update(visible=False), # groq_options
gr.update(visible=False), # openai_options
gr.update(value=ctx_size), # context_size
gr.Dropdown(choices=model_choices, value="Phi-3 Mini 4K") # openai_model (not used)
]
elif choice == "Groq API":
model_choices = list(model_registry.groq_models.keys())
return [
gr.update(visible=False), # hf_options
gr.update(visible=True), # groq_options
gr.update(visible=False), # openai_options
gr.update(value=ctx_size), # context_size
gr.Dropdown(choices=model_choices, value=model_choices[0] if model_choices else None) # openai_model (not used)
]
# Default return for "Clipboard only" or other options
return [
gr.update(visible=False), # hf_options
gr.update(visible=False), # groq_options
gr.update(visible=False), # openai_options
gr.update(value=4096), # context_size
gr.Dropdown(choices=[]) # openai_model (not used)
]
# PDF Processing Handlers
def handle_pdf_process(pdf, fmt, ctx_size): # Remove md_eng parameter
if not pdf:
return "Please upload a PDF file.", "", "", [], gr.update(choices=[], value=None), None
try:
text = extract_text_from_pdf(pdf.name, format_type=fmt) # Just use format_type
if text.startswith("Error"):
return text, "", "", [], gr.update(choices=[], value=None), None
# The important part: still do snippets processing
snippets_list = split_into_snippets(text, ctx_size)
snippet_choices = update_snippet_choices(snippets_list)
with tempfile.NamedTemporaryFile(delete=False, mode='w', suffix=f'.{fmt}') as f:
f.write(text)
download_file = f.name
return (
f"PDF processed successfully! Generated {len(snippets_list)} snippets.",
text,
text,
snippets_list,
gr.update(choices=snippet_choices, value=snippet_choices[0] if snippet_choices else None),
download_file
)
except Exception as e:
error_msg = f"Error processing PDF: {str(e)}"
logging.error(error_msg)
return error_msg, "", "", [], gr.update(choices=[], value=None), None
def handle_snippet_selection(choice, snippets_list): # Add download_snippet output
"""Handle snippet selection, update prompt, and provide snippet download."""
if not snippets_list:
return "No snippets available.", "", None # Return None for download
try:
idx = get_snippet_index(choice)
selected_snippet = snippets_list[idx]
with tempfile.NamedTemporaryFile(delete=False, mode='w', suffix='.txt') as f:
f.write(selected_snippet)
snippet_download_file = f.name # Store the file path
return (
f"Selected snippet {idx + 1}",
selected_snippet,
snippet_download_file # Return file for download
)
except Exception as e:
error_msg = f"Error selecting snippet: {str(e)}"
logging.error(error_msg)
return (
error_msg,
"",
None
)
# Copy button handlers
def handle_prompt_generation(snippet_text, template, snippet_choice, snippets_list):
try:
if not snippets_list:
return "No text available.", "", None
idx = get_snippet_index(snippet_choice)
base_prompt = template if template else "Summarize the following text:"
content = snippets_list[idx]
prompt = f"{base_prompt}\n---\n{content}\n---"
# Save prompt for download
with tempfile.NamedTemporaryFile(delete=False, mode='w', suffix='.txt') as f:
f.write(prompt)
download_file = f.name
return "Prompt generated!", prompt, download_file # Return the file for download_prompt
except Exception as e:
logging.error(f"Error generating prompt: {e}")
return f"Error: {str(e)}", "", None
def handle_copy_action(text):
"""Handle copy to clipboard action"""
return {
progress_status: gr.update(value="Text copied to clipboard!", visible=True)
}
# Connect all event handlers
# Core event handlers
process_button.click(
handle_pdf_process,
inputs=[pdf_input, format_type, context_size],
outputs=[progress_status, processed_text, pdf_content, snippets, snippet_selector, download_full_text]
)
generate_prompt_btn.click(
handle_prompt_generation,
inputs=[generated_prompt, custom_prompt, snippet_selector, snippets],
outputs=[progress_status, generated_prompt, download_prompt]
)
# Snippet handling
snippet_selector.change(
handle_snippet_selection,
inputs=[snippet_selector, snippets],
outputs=[progress_status, generated_prompt, download_snippet] # Connect download_snippet
)
# Model selection
model_choice.change(
handle_model_selection,
inputs=[model_choice],
outputs=[
hf_options,
groq_options,
openai_options,
context_size,
openai_model
]
)
hf_model.change(
toggle_custom_model,
inputs=[hf_model],
outputs=[hf_custom_model]
)
groq_model.change(
handle_groq_model_change,
inputs=[groq_model],
outputs=[context_size]
)
def download_file(content: str, prefix: str) -> List[str]:
if not content:
return []
try:
filename = f"{prefix}_{int(time.time())}.txt" # Add timestamp
with tempfile.NamedTemporaryFile(delete=False, mode='w', suffix='.txt', prefix=filename) as f:
f.write(content)
return [f.name]
except Exception as e:
logging.error(f"Error creating download file: {e}")
return []
# ChatGPT handler
open_chatgpt_button.click(
fn=lambda: "window.open('https://chat.openai.com/', '_blank'); return 'Opened ChatGPT in new tab';",
inputs=None,
outputs=progress_status,
js=True
)
# Model processing
send_to_model_btn.click(
send_to_model,
inputs=[
generated_prompt,
model_choice,
hf_model,
hf_custom_model,
hf_api_key,
groq_model,
groq_api_key,
openai_api_key,
openai_model
],
outputs=[summary_output, download_summary]
)
groq_refresh_btn.click(
refresh_groq_models_list,
outputs=[groq_model]
)
# Instructions
gr.Markdown("""
### π Instructions:
1. Upload a PDF document
2. Choose output format and context window size
3. Select snippet number (default: 1) or enter custom prompt
4. Select your preferred model in case you want to proceed directly (or continue with 5):
- OpenAI ChatGPT: Manual copy/paste workflow
- HuggingFace Inference: Direct API integration
- Groq API: High-performance inference
5. Click 'Process PDF' to generate summary
6. Use 'Copy Prompt' and, optionally, 'Open ChatGPT' for manual processing
7. Download generated files as needed
""")
# Launch the interface
if __name__ == "__main__":
demo.launch(share=False, debug=True) |