Spaces:
Running
Running
File size: 69,597 Bytes
9d8df86 38b3cc5 d2a93c9 9d8df86 fd11110 9d8df86 ff1b4d3 897fb70 8bbb294 897fb70 c2a46b3 38b3cc5 9d8df86 897fb70 ff1b4d3 001e628 ff1b4d3 d89b36d ffe0a95 2ecb90c 2a80a86 ffe0a95 a8eafe1 8bbb294 ce55771 2ecb90c ce55771 8bbb294 19a6585 ebf5837 8bbb294 ffe0a95 d89b36d 8bbb294 897fb70 001e628 7dadb62 8bbb294 2a80a86 8bbb294 2a80a86 8bbb294 ffe0a95 001e628 ffe0a95 001e628 19a6585 897fb70 fd11110 897fb70 ff1b4d3 39a451a fd11110 38b3cc5 fd11110 39a451a fd11110 38b3cc5 fd11110 9d8df86 897fb70 9d8df86 897fb70 9d8df86 897fb70 9d8df86 ff1b4d3 9d8df86 ff1b4d3 9d8df86 ff1b4d3 9d8df86 f97296a e61f887 19a6585 a8eafe1 d021055 5246944 7dadb62 f97296a 28e0649 19a6585 7dadb62 a8eafe1 7dadb62 19a6585 f97296a 19a6585 28e0649 7dadb62 19a6585 28e0649 7dadb62 19a6585 7dadb62 a8eafe1 7dadb62 a8eafe1 7dadb62 a8eafe1 7dadb62 19a6585 d89b36d 8bbb294 7cfd21b 5246944 a8eafe1 2b4c1a8 a545c06 7cfd21b 24bc431 a545c06 24bc431 a545c06 24bc431 a545c06 2a80a86 a545c06 a8eafe1 19a6585 5246944 3a2a0c1 19a6585 a8eafe1 19a6585 3a2a0c1 8d039b9 19a6585 4299f2d 19a6585 5246944 8d039b9 19a6585 5246944 a8eafe1 19a6585 8bbb294 ebf5837 ce55771 ebf5837 ce55771 ebf5837 ce55771 8d039b9 895ad65 5246944 19a6585 4299f2d 19a6585 4299f2d 5246944 f97296a 030aaa2 9f34c41 f97296a 4299f2d 8d039b9 f97296a 5246944 a8eafe1 5246944 4299f2d a8eafe1 2a80a86 5af2fbd 2a80a86 5af2fbd 2a80a86 5af2fbd 2a80a86 19a6585 2a80a86 19a6585 8bbb294 28e0649 19a6585 28e0649 19a6585 c6a926f 19a6585 28e0649 ebf5837 897fb70 ebf5837 19a6585 ebf5837 19a6585 001e628 19a6585 a8eafe1 19a6585 8bbb294 19a6585 8bbb294 19a6585 8bbb294 a8eafe1 19a6585 8bbb294 19a6585 ebf5837 19a6585 ebf5837 19a6585 ebf5837 19a6585 ebf5837 19a6585 ebf5837 8bbb294 d89b36d 2a80a86 8b246e4 0536b51 d89b36d 0536b51 cb22f6c d89b36d 897fb70 d89b36d 897fb70 d89b36d 897fb70 d89b36d 897fb70 d89b36d 897fb70 d89b36d 897fb70 cb22f6c 897fb70 d89b36d 897fb70 9d8df86 d89b36d 9d8df86 0536b51 d89b36d 897fb70 9d8df86 897fb70 38b3cc5 d89b36d ff1b4d3 d89b36d cb22f6c d89b36d 39a451a d89b36d 0536b51 d89b36d 0536b51 d89b36d 0536b51 d89b36d a077d87 9d8df86 d89b36d a04534b cb22f6c d89b36d a077d87 d89b36d 2a80a86 8bbb294 2a80a86 d89b36d 2a80a86 0710c34 2a80a86 d6f4dfb 2a80a86 d6f4dfb 2a80a86 d6f4dfb 2a80a86 d6f4dfb 2a80a86 72b2920 2a80a86 72b2920 d6f4dfb 2a80a86 9d8df86 d89b36d 9d8df86 d89b36d 9d8df86 897fb70 e61f887 897fb70 bfc0f42 0536b51 897fb70 d89b36d 39a451a d89b36d b74b8ba d89b36d 39a451a d89b36d b74b8ba 39a451a fd11110 b74b8ba fd11110 d89b36d b74b8ba 8b246e4 fd11110 8b246e4 b74b8ba 8b246e4 d89b36d fd11110 d89b36d a077d87 d89b36d a077d87 d89b36d a077d87 d89b36d a077d87 8b246e4 a077d87 8b246e4 a077d87 d89b36d 8b246e4 d89b36d 0536b51 d89b36d 0536b51 d89b36d 0536b51 d89b36d a077d87 d89b36d a077d87 d89b36d 0536b51 d89b36d a077d87 d89b36d a077d87 d89b36d 2a80a86 d89b36d a077d87 d89b36d 9d8df86 d89b36d 9d8df86 d89b36d 9d8df86 8b246e4 19a6585 d2a93c9 2a80a86 8b246e4 9d8df86 897fb70 d89b36d 897fb70 0536b51 001e628 0536b51 d89b36d e61f887 cb22f6c 72b2920 9d8df86 72b2920 7dadb62 72b2920 9d8df86 897fb70 d89b36d ff1b4d3 9d8df86 ff1b4d3 cb22f6c 897fb70 ff1b4d3 cb22f6c ff1b4d3 9d8df86 38b3cc5 9d8df86 38b3cc5 9d8df86 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 |
import os
import re
import tempfile
import requests
import gradio as gr
print(f"Gradio version: {gr.__version__}")
from PyPDF2 import PdfReader
import fitz # pymupdf
import logging
import webbrowser
from huggingface_hub import InferenceClient
from typing import Dict, List, Optional, Tuple
from functools import wraps
import threading
import time
from groq import Groq # Import the Groq client
# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# Constants
CONTEXT_SIZES = {
"4K": 4096,
"8K": 8192,
"32K": 32768,
"64K": 65536,
"128K": 131072
}
MODEL_CONTEXT_SIZES = {
"Clipboard only": 4096,
"OpenAI ChatGPT": {
"gpt-3.5-turbo": 16385,
"gpt-3.5-turbo-0125": 16385,
"gpt-3.5-turbo-1106": 16385,
"gpt-3.5-turbo-instruct": 4096,
"gpt-4": 8192,
"gpt-4-0314": 8192,
"gpt-4-0613": 8192,
"gpt-4-turbo": 128000,
"gpt-4-turbo-2024-04-09": 128000,
"gpt-4-turbo-preview": 128000,
"gpt-4-0125-preview": 128000,
"gpt-4-1106-preview": 128000,
"gpt-4o": 128000,
"gpt-4o-2024-11-20": 128000,
"gpt-4o-2024-08-06": 128000,
"gpt-4o-2024-05-13": 128000,
"chatgpt-4o-latest": 128000,
"gpt-4o-mini": 128000,
"gpt-4o-mini-2024-07-18": 128000,
"gpt-4o-realtime-preview": 128000,
"gpt-4o-realtime-preview-2024-10-01": 128000,
"gpt-4o-audio-preview": 128000,
"gpt-4o-audio-preview-2024-10-01": 128000,
"o1-preview": 128000,
"o1-preview-2024-09-12": 128000,
"o1-mini": 128000,
"o1-mini-2024-09-12": 128000,
},
"HuggingFace Inference": {
"microsoft/phi-3-mini-4k-instruct": 4096,
"microsoft/Phi-3-mini-128k-instruct": 131072, # Added Phi-3 128k
"HuggingFaceH4/zephyr-7b-beta": 8192,
"deepseek-ai/DeepSeek-Coder-V2-Instruct": 8192,
"mistralai/Mistral-7B-Instruct-v0.3": 32768,
"NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO": 32768,
"microsoft/Phi-3.5-mini-instruct": 4096,
"HuggingFaceTB/SmolLM2-1.7B-Instruct": 2048,
"google/gemma-2-2b-it": 2048,
"openai-community/gpt2": 1024,
"microsoft/phi-2": 2048,
"TinyLlama/TinyLlama-1.1B-Chat-v1.0": 2048,
"VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct": 2048,
"VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct": 4096,
"VAGOsolutions/SauerkrautLM-Nemo-12b-Instruct": 4096,
"openGPT-X/Teuken-7B-instruct-research-v0.4": 4096,
"Qwen/Qwen2.5-7B-Instruct": 131072,
"tiiuae/falcon-7b-instruct": 8192,
"Qwen/QwQ-32B-preview": 32768, # Add QwQ model
},
"Groq API": {
"gemma2-9b-it": 8192,
"gemma-7b-it": 8192,
"llama-3.3-70b-versatile": 131072,
"llama-3.1-70b-versatile": 131072, # Deprecated
"llama-3.1-8b-instant": 131072,
"llama-guard-3-8b": 8192,
"llama3-70b-8192": 8192,
"llama3-8b-8192": 8192,
"mixtral-8x7b-32768": 32768,
"llama3-groq-70b-8192-tool-use-preview": 8192,
"llama3-groq-8b-8192-tool-use-preview": 8192,
"llama-3.3-70b-specdec": 131072,
"llama-3.1-70b-specdec": 131072,
"llama-3.2-1b-preview": 131072,
"llama-3.2-3b-preview": 131072,
},
"Cohere API": {
"command-r-plus-08-2024": 131072, # 128k
"command-r-plus-04-2024": 131072,
"command-r-plus": 131072,
"command-r-08-2024": 131072,
"command-r-03-2024": 131072,
"command-r": 131072,
"command": 4096,
"command-nightly": 131072,
"command-light": 4096,
"command-light-nightly": 4096,
"c4ai-aya-expanse-8b": 8192,
"c4ai-aya-expanse-32b": 131072,
},
"GLHF API": {
"mistralai/Mixtral-8x7B-Instruct-v0.1": 32768,
# "NousResearch/Nous-Hermes-2-Solar-10.7B": 32768,
"01-ai/Yi-34B-Chat": 32768,
"mistralai/Mistral-7B-Instruct-v0.3": 32768,
"microsoft/phi-3-mini-4k-instruct": 4096,
"microsoft/Phi-3.5-mini-instruct": 4096,
"microsoft/Phi-3-mini-128k-instruct": 131072,
"HuggingFaceH4/zephyr-7b-beta": 8192,
"NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO": 32768,
"google/gemma-2-2b-it": 2048,
"microsoft/phi-2": 2048,
}
}
class RateLimit:
def __init__(self, calls_per_min):
self.calls_per_min = calls_per_min
self.calls = []
self.lock = threading.Lock()
def __call__(self, func):
@wraps(func)
def wrapped(*args, **kwargs):
with self.lock:
now = time.time()
# Remove old calls
self.calls = [call for call in self.calls if call > now - 60]
if len(self.calls) >= self.calls_per_min:
sleep_time = self.calls[0] - (now - 60)
if sleep_time > 0:
time.sleep(sleep_time)
self.calls.append(now)
return func(*args, **kwargs)
return wrapped
class ModelRegistry:
def __init__(self):
# HuggingFace Models
self.hf_models = {
"Mistral 7B": "mistralai/Mistral-7B-Instruct-v0.3", # works well
"Nous-Hermes": "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO", # works well
"Zephyr 7B": "HuggingFaceH4/zephyr-7b-beta", # works
"Phi-3.5 Mini": "microsoft/Phi-3.5-mini-instruct", # works but poor results
"Phi-3 Mini 4K": "microsoft/phi-3-mini-4k-instruct", # good for small context
"Phi-3 Mini 128K": "microsoft/Phi-3-mini-128k-instruct", # good for large context
"Gemma 2 2B": "google/gemma-2-2b-it", # works but often busy
"GPT2": "openai-community/gpt2", # works with token limits
"Phi-2": "microsoft/phi-2", # works with token limits
"TinyLlama 1.1B": "TinyLlama/TinyLlama-1.1B-Chat-v1.0", # works with token limits
"DeepSeek Coder V2": "deepseek-ai/DeepSeek-Coder-V2-Instruct", # good for code
"Falcon-7B": "tiiuae/falcon-7b-instruct", # reliable
"Qwen 2.5 7B": "Qwen/Qwen2.5-7B-Instruct", # good performance
"QwQ 32B Preview": "Qwen/QwQ-32B-preview", # special handling
# Models requiring API key
"DeepSeek Coder V2 (Pro)": "deepseek-ai/DeepSeek-Coder-V2-Instruct", # needs API key
"Meta Llama 3.1 70B (Pro)": "meta-llama/Meta-Llama-3.1-70B-Instruct", # needs API key
"Aya 23-35B (Pro)": "CohereForAI/aya-23-35B", # needs API key
"Custom Model": ""
}
# Default Groq Models
self.default_groq_models = { # Keep defaults in case fetching fails
"gemma2-9b-it": "gemma2-9b-it",
"gemma-7b-it": "gemma-7b-it",
"llama-3.3-70b-versatile": "llama-3.3-70b-versatile",
"llama-3.1-70b-versatile": "llama-3.1-70b-versatile", # Deprecated
"llama-3.1-8b-instant": "llama-3.1-8b-instant",
"llama-guard-3-8b": "llama-guard-3-8b",
"llama3-70b-8192": "llama3-70b-8192",
"llama3-8b-8192": "llama3-8b-8192",
"mixtral-8x7b-32768": "mixtral-8x7b-32768",
"llama3-groq-70b-8192-tool-use-preview": "llama3-groq-70b-8192-tool-use-preview",
"llama3-groq-8b-8192-tool-use-preview": "llama3-groq-8b-8192-tool-use-preview",
"llama-3.3-70b-specdec": "llama-3.3-70b-specdec",
"llama-3.1-70b-specdec": "llama-3.1-70b-specdec",
"llama-3.2-1b-preview": "llama-3.2-1b-preview",
"llama-3.2-3b-preview": "llama-3.2-3b-preview",
}
self.groq_models = self._fetch_groq_models()
def _fetch_groq_models(self) -> Dict[str, str]:
"""Fetch available Groq models with proper error handling"""
try:
groq_api_key = os.getenv('GROQ_API_KEY')
if not groq_api_key:
logging.warning("No GROQ_API_KEY found in environment")
return self.default_groq_models
headers = {
"Authorization": f"Bearer {groq_api_key}",
"Content-Type": "application/json"
}
response = requests.get(
"https://api.groq.com/openai/v1/models",
headers=headers,
timeout=10
)
if response.status_code == 200:
models = response.json().get("data", [])
model_dict = {model["id"]: model["id"] for model in models}
# Merge with defaults to ensure all models are available
return {**self.default_groq_models, **model_dict}
else:
logging.error(f"Failed to fetch Groq models: {response.status_code}")
return self.default_groq_models
except requests.exceptions.Timeout:
logging.error("Timeout while fetching Groq models")
return self.default_groq_models
except Exception as e:
logging.error(f"Error fetching Groq models: {e}")
return self.default_groq_models
def _get_default_groq_models(self) -> Dict[str, str]:
"""Return default Groq models"""
return self.default_groq_models
def refresh_groq_models(self) -> Dict[str, str]:
"""Refresh the list of available Groq models"""
self.groq_models = self._fetch_groq_models()
return self.groq_models
def apply_rate_limit(func, calls_per_min, *args, **kwargs):
"""Apply rate limiting only when needed."""
rate_decorator = RateLimit(calls_per_min)
wrapped_func = rate_decorator(func)
return wrapped_func(*args, **kwargs)
class PDFProcessor:
"""Handles PDF conversion to text and markdown using different methods"""
@staticmethod
def txt_convert(pdf_path: str) -> str:
"""Basic text extraction using PyPDF2"""
try:
reader = PdfReader(pdf_path)
text = ""
for page_num, page in enumerate(reader.pages, start=1):
page_text = page.extract_text()
if page_text:
text += page_text + "\n"
else:
logging.warning(f"No text found on page {page_num}.")
return text
except Exception as e:
logging.error(f"Error in txt conversion: {e}")
return f"Error: {str(e)}"
@staticmethod
def md_convert_with_pymupdf(pdf_path: str) -> str:
"""Convert PDF to Markdown using pymupdf"""
try:
doc = fitz.open(pdf_path)
markdown_text = []
for page in doc:
blocks = page.get_text("dict")["blocks"]
for block in blocks:
if "lines" in block:
for line in block["lines"]:
for span in line["spans"]:
font_size = span["size"]
content = span["text"]
font_flags = span["flags"] # Contains bold, italic info
# Handle headers based on font size
if font_size > 20:
markdown_text.append(f"# {content}\n")
elif font_size > 16:
markdown_text.append(f"## {content}\n")
elif font_size > 14:
markdown_text.append(f"### {content}\n")
else:
# Handle bold and italic
if font_flags & 2**4: # Bold
content = f"**{content}**"
if font_flags & 2**1: # Italic
content = f"*{content}*"
markdown_text.append(content)
markdown_text.append(" ") # Space between spans
markdown_text.append("\n") # Newline between lines
# Add extra newline between blocks for paragraphs
markdown_text.append("\n")
doc.close()
return "".join(markdown_text)
except Exception as e:
logging.error(f"Error in pymupdf conversion: {e}")
return f"Error: {str(e)}"
# Initialize model registry
model_registry = ModelRegistry()
def extract_text_from_pdf(pdf_path: str, format_type: str = "txt") -> str:
"""
Extract and format text from PDF using different processors based on format.
Args:
pdf_path: Path to PDF file
format_type: Either 'txt' or 'md'
Returns:
Formatted text content
"""
processor = PDFProcessor()
try:
if format_type == "txt":
return processor.txt_convert(pdf_path)
elif format_type == "md":
return processor.md_convert_with_pymupdf(pdf_path)
else:
return f"Error: Unsupported format type: {format_type}"
except Exception as e:
logging.error(f"Error in PDF conversion: {e}")
return f"Error: {str(e)}"
def format_content(text: str, format_type: str) -> str:
"""Format extracted text according to specified format."""
if format_type == 'txt':
return text
elif format_type == 'md':
paragraphs = text.split('\n\n')
return '\n\n'.join(paragraphs)
elif format_type == 'html':
paragraphs = text.split('\n\n')
return ''.join([f'<p>{para.strip()}</p>' for para in paragraphs if para.strip()])
else:
logging.error(f"Unsupported format: {format_type}")
return f"Unsupported format: {format_type}"
def split_into_snippets(text: str, context_size: int) -> List[str]:
"""Split text into manageable snippets based on context size."""
sentences = re.split(r'(?<=[.!?]) +', text)
snippets = []
current_snippet = ""
for sentence in sentences:
if len(current_snippet) + len(sentence) + 1 > context_size:
if current_snippet:
snippets.append(current_snippet.strip())
current_snippet = sentence + " "
else:
snippets.append(sentence.strip())
current_snippet = ""
else:
current_snippet += sentence + " "
if current_snippet.strip():
snippets.append(current_snippet.strip())
return snippets
def build_prompts(snippets: List[str], prompt_instruction: str, custom_prompt: Optional[str], snippet_num: Optional[int] = None) -> str:
"""Build formatted prompts from text snippets."""
if snippet_num is not None:
if 1 <= snippet_num <= len(snippets):
selected_snippets = [snippets[snippet_num - 1]]
else:
return f"Error: Invalid snippet number. Please choose between 1 and {len(snippets)}."
else:
selected_snippets = snippets
prompts = []
base_prompt = custom_prompt if custom_prompt else prompt_instruction
for idx, snippet in enumerate(selected_snippets, start=1):
if len(selected_snippets) > 1:
prompt_header = f"{base_prompt} Part {idx} of {len(selected_snippets)}: ---\n"
else:
prompt_header = f"{base_prompt} ---\n"
framed_prompt = f"{prompt_header}{snippet}\n---"
prompts.append(framed_prompt)
return "\n\n".join(prompts)
def send_to_model(prompt, model_selection, hf_model_choice, hf_custom_model, hf_api_key,
groq_model_choice, groq_api_key, openai_api_key, openai_model_choice,
cohere_api_key=None, cohere_model=None, glhf_api_key=None, glhf_model=None,
glhf_custom_model=None):
"""Primary wrapper for model interactions with error handling."""
logging.info("send to model starting...")
if not prompt or not prompt.strip():
return gr.HTML(""), "Error: No prompt provided", None
try:
logging.info("sending to model preparation.")
# Basic input validation
valid_selections = ["Clipboard only", "HuggingFace Inference", "Groq API",
"OpenAI ChatGPT", "Cohere API", "GLHF API"]
if model_selection not in valid_selections:
return gr.HTML(""), "Error: Invalid model selection", None
# Check environment API keys
env_api_keys = {
"GROQ_API_KEY": os.getenv('GROQ_API_KEY'),
"OPENAI_API_KEY": os.getenv('OPENAI_API_KEY'),
"COHERE_API_KEY": os.getenv('COHERE_API_KEY'),
"GLHF_API_KEY": os.getenv('GLHF_API_KEY')
}
for key_name, key_value in env_api_keys.items():
if not key_value:
logging.warning(f"No {key_name} found in environment")
# Model-specific validation - check only required keys
if model_selection == "Groq API" and not groq_api_key:
groq_api_key = env_api_keys.get("GROQ_API_KEY")
if not groq_api_key:
return gr.HTML(""), "Error: Groq API key required", None
elif model_selection == "OpenAI ChatGPT" and not openai_api_key:
openai_api_key = env_api_keys.get("OPENAI_API_KEY")
if not openai_api_key:
return gr.HTML(""), "Error: OpenAI API key required", None
elif model_selection == "GLHF API" and not glhf_api_key:
glhf_api_key = env_api_keys.get("GLHF_API_KEY")
if not glhf_api_key:
return gr.HTML(""), "Error: GLHF API key required", None
# Call the implementation function
clipboard_status, summary, download_file = send_to_model_impl(
prompt=prompt.strip(),
model_selection=model_selection,
hf_model_choice=hf_model_choice,
hf_custom_model=hf_custom_model,
hf_api_key=hf_api_key,
groq_model_choice=groq_model_choice,
groq_api_key=groq_api_key,
openai_api_key=openai_api_key,
openai_model_choice=openai_model_choice,
cohere_api_key=cohere_api_key or env_api_keys.get("COHERE_API_KEY"),
cohere_model=cohere_model,
glhf_api_key=glhf_api_key,
glhf_model=glhf_model,
glhf_custom_model=glhf_custom_model,
use_rate_limits=False # Adjust based on your needs
)
return clipboard_status, summary, download_file
except Exception as e:
error_msg = str(e) or "Unknown error occurred"
logging.error(f"Error in send_to_model: {error_msg}")
return gr.HTML(f"Error: {error_msg}"), f"Error: {error_msg}", None
finally:
logging.info("send to model completed.")
def send_to_model_impl(prompt, model_selection, hf_model_choice, hf_custom_model, hf_api_key,
groq_model_choice, groq_api_key, openai_api_key, openai_model_choice,
cohere_api_key=None, cohere_model=None, glhf_api_key=None, glhf_model=None,
glhf_custom_model=None, use_rate_limits=False):
"""Implementation of model sending with all providers."""
logging.info("send to model impl commencing...")
try:
if model_selection == "Clipboard only":
# Escape the prompt for JavaScript
escaped_prompt = prompt.replace('"', '\\"').replace("'", "\\'").replace('\n', '\\n')
# Create temporary file for download
with tempfile.NamedTemporaryFile(delete=False, mode='w', suffix='.txt') as f:
f.write(prompt)
download_file = f.name
# Create HTML with JavaScript using fallback methods
html_template = f'''
<button
onclick="
try {{
const textToCopy = `{escaped_prompt}`;
navigator.clipboard.writeText(textToCopy)
.then(() => {{
this.textContent = 'β
Copied to clipboard!';
setTimeout(() => {{
this.textContent = 'π Copy Text to Clipboard';
}}, 2000);
}})
.catch(err => {{
console.error('Modern copy failed:', err);
// Fallback to textarea method
const textarea = document.createElement('textarea');
textarea.value = textToCopy;
document.body.appendChild(textarea);
textarea.select();
document.execCommand('copy');
document.body.removeChild(textarea);
this.textContent = 'β
Copied using fallback!';
setTimeout(() => {{
this.textContent = 'π Copy Text to Clipboard';
}}, 2000);
}});
}} catch(err) {{
console.error('Copy error:', err);
this.textContent = 'β Copy failed. Try again.';
setTimeout(() => {{
this.textContent = 'π Copy Text to Clipboard';
}}, 2000);
}}
"
style="
padding: 10px 20px;
background-color: #2C3E50;
color: white;
border: none;
border-radius: 5px;
font-weight: bold;
cursor: pointer;
transition: background-color 0.3s ease;
"
onmouseover="this.style.backgroundColor='#34495E'"
onmouseout="this.style.backgroundColor='#2C3E50'"
>
π Copy Text to Clipboard
</button>
'''
# Return all three expected outputs:
# 1. HTML component for clipboard action
# 2. A success message for summary output
# 3. The download file
return gr.HTML(html_template), "Use Copy Text to Clipboard button below, then paste where you like.", download_file
# Get the summary based on model selection
if model_selection == "HuggingFace Inference":
# Use the selected model ID directly
model_id = hf_custom_model if hf_model_choice == "Custom Model" else hf_model_choice
# Always try without API key first
summary = send_to_hf_inference(prompt, model_id)
if summary.startswith("Error: This model requires authentication") and hf_api_key:
# Only try with API key if the model specifically requires it
summary = send_to_hf_inference(prompt, model_id, hf_api_key, use_rate_limits)
elif model_selection == "Groq API":
if not groq_api_key:
return gr.HTML(""), "Error: Groq API key required", None
summary = send_to_groq(prompt, groq_model_choice, groq_api_key, use_rate_limits)
elif model_selection == "OpenAI ChatGPT":
if not openai_api_key:
return "Error: OpenAI API key required", None
summary = send_to_openai(prompt, openai_api_key, model=openai_model_choice,
use_rate_limit=use_rate_limits)
elif model_selection == "Cohere API":
summary = send_to_cohere(prompt, cohere_api_key, cohere_model, use_rate_limits)
elif model_selection == "GLHF API":
if not glhf_api_key:
return "Error: GLHF API key required", None
# Handle model selection
if glhf_model == "Custom Model":
model_id = f"hf:{glhf_custom_model}"
else:
model_id = f"hf:{glhf_model}"
summary = send_to_glhf(prompt, glhf_api_key, model_id, use_rate_limits)
else:
return "Error: Invalid model selection", None
# Validate response
if not summary:
return gr.HTML(""), "Error: No response from model", None
if not isinstance(summary, str):
return gr.HTML(""), "Error: Invalid response type from model", None
# Create download file for valid responses
if not summary.startswith("Error"):
with tempfile.NamedTemporaryFile(delete=False, mode='w', suffix='.txt') as f:
f.write(summary)
return gr.HTML(""), summary, f.name
return gr.HTML(""), summary, None
except Exception as e:
error_msg = str(e)
if not error_msg:
error_msg = "Unknown error occurred"
logging.error(f"Error in send_to_model_impl: {error_msg}")
# FIX: Return all three values even in error case
return gr.HTML(""), f"Error: {error_msg}", None
def send_to_qwq(prompt: str):
"""Send prompt to QwQ API."""
try:
from gradio_client import Client
client = Client("Qwen/QwQ-32B-preview")
# Call the add_text endpoint
result = client.predict(
_input={"files":[], "text": prompt},
_chatbot=[],
api_name="/add_text"
)
# Call the agent_run endpoint
response = client.predict(
_chatbot=result[1], # This is correct
api_name="/agent_run"
)
if isinstance(response, list) and len(response) > 0:
# Extract text from first message in chat history
if isinstance(response[0], list) and len(response[0]) > 0:
if isinstance(response[0][1], dict):
return response[0][1].get('text', 'No response text from QwQ')
elif isinstance(response[0][1], str):
return response[0][1]
return 'No valid response from QwQ'
return 'No response from QwQ'
except Exception as e:
logging.error(f"QwQ API error: {e}")
return f"Error with QwQ API: {str(e)}"
def send_to_hf_inference(prompt: str, model_name: str, api_key: str = None, use_rate_limit: bool = False) -> str:
"""Send prompt to HuggingFace Inference API."""
# Special handling for QwQ
if model_name == "Qwen/QwQ-32B-preview":
return send_to_qwq(prompt)
def _send():
# Check token limits first
is_within_limits, error_msg = check_token_limits(prompt, model_name)
if not is_within_limits:
return error_msg
try:
client = InferenceClient(token=api_key) if api_key else InferenceClient()
response = client.text_generation(
prompt,
model=model_name,
max_new_tokens=500,
temperature=0.7,
top_p=0.95,
repetition_penalty=1.1
)
return str(response)
except Exception as e:
logging.error(f"HuggingFace inference error: {e}")
return f"Error with HuggingFace inference: {str(e)}"
return apply_rate_limit(_send, 16) if use_rate_limit else _send()
def send_to_glhf(prompt: str, api_key: str, model_id: str, use_rate_limit: bool = False) -> str:
"""Send prompt to GLHF API."""
def _send():
try:
import openai
client = openai.OpenAI(
api_key=api_key,
base_url="https://glhf.chat/api/openai/v1",
)
# For GLHF, always use streaming for reliability
completion = client.chat.completions.create(
stream=True,
model=model_id,
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt}
],
)
response_text = []
for chunk in completion:
if chunk.choices[0].delta.content is not None:
response_text.append(chunk.choices[0].delta.content)
return "".join(response_text)
except Exception as e:
logging.error(f"GLHF API error: {e}")
return f"Error with GLHF API: {str(e)}"
return apply_rate_limit(_send, 384) if use_rate_limit else _send()
def send_to_openai(prompt: str, api_key: str, model: str = "gpt-3.5-turbo", use_rate_limit: bool = False) -> str:
"""Send prompt to OpenAI API."""
def _send():
try:
from openai import OpenAI
client = OpenAI(api_key=api_key)
response = client.chat.completions.create(
model=model,
messages=[
{"role": "system", "content": "You are a helpful assistant that provides detailed responses."},
{"role": "user", "content": prompt}
],
temperature=0.7,
max_tokens=500,
top_p=0.95
)
if response.choices and len(response.choices) > 0:
return response.choices[0].message.content
return "Error: No response generated"
except ImportError:
return "Error: Please install the latest version of openai package"
except Exception as e:
logging.error(f"OpenAI API error: {e}")
return f"Error with OpenAI API: {str(e)}"
return apply_rate_limit(_send, 3000/60) if use_rate_limit else _send()
def send_to_cohere(prompt: str, api_key: str = None, model: str = None, use_rate_limit: bool = False) -> str:
"""Send prompt to Cohere API with V2 and V1 fallback."""
def _send():
try:
import cohere
# Try V2 first
try:
client = cohere.ClientV2(api_key) if api_key else cohere.ClientV2()
response = client.chat(
model=model or "command-r-plus-08-2024",
messages=[{
"role": "user",
"content": prompt
}],
temperature=0.7,
)
return response.message.content[0].text
except Exception as v2_error:
logging.warning(f"Cohere V2 failed, trying V1: {v2_error}")
# Fallback to V1
client = cohere.Client(api_key) if api_key else cohere.Client()
response = client.chat(
message=prompt,
model=model or "command-r-plus-08-2024",
temperature=0.7,
max_tokens=500,
)
return response.text
except Exception as e:
logging.error(f"Cohere API error: {e}")
return f"Error with Cohere API: {str(e)}"
return apply_rate_limit(_send, 16) if use_rate_limit else _send()
def send_to_groq(prompt: str, model_name: str, api_key: str, use_rate_limit: bool = False) -> str:
"""Send prompt to Groq API."""
def _send():
try:
client = Groq(api_key=api_key)
response = client.chat.completions.create(
model=model_name,
messages=[{
"role": "user",
"content": prompt
}],
temperature=0.7,
max_tokens=500,
top_p=0.95
)
return response.choices[0].message.content
except Exception as e:
logging.error(f"Groq API error: {e}")
return f"Error with Groq API: {str(e)}"
return apply_rate_limit(_send, 4) if use_rate_limit else _send()
def estimate_tokens(text: str) -> int:
"""Rough token estimation: ~4 characters per token on average"""
return len(text) // 4
def check_token_limits(prompt: str, model_name: str) -> tuple[bool, str]:
"""Check if prompt might exceed model's token limits."""
token_limited_models = {
"openai-community/gpt2": 1500, # 2048 - buffer
"microsoft/phi-2": 1500,
"TinyLlama/TinyLlama-1.1B-Chat-v1.0": 1500
}
if model_name in token_limited_models:
estimated_tokens = estimate_tokens(prompt)
max_tokens = token_limited_models[model_name]
if estimated_tokens > max_tokens:
return False, f"Prompt too long (estimated {estimated_tokens} tokens). This model supports max {max_tokens} tokens."
return True, ""
def copy_to_clipboard(text):
return gr.HTML(f"""
<script>
navigator.clipboard.writeText(`{text}`).then(
function() {{
const btn = document.querySelector('button:contains("Copy to Clipboard")');
btn.textContent = 'β
Copied!';
setTimeout(() => btn.textContent = 'π Copy to Clipboard', 2000);
}},
function(err) {{
console.error('Failed to copy:', err);
const btn = document.querySelector('button:contains("Copy to Clipboard")');
btn.textContent = 'β Failed to copy';
setTimeout(() => btn.textContent = 'π Copy to Clipboard', 2000);
}}
);
</script>
""")
def handle_model_selection(choice):
"""Handle model selection and update UI"""
ctx_size = MODEL_CONTEXT_SIZES.get(choice, {})
if isinstance(ctx_size, dict):
first_model = list(ctx_size.keys())[0]
ctx_size = ctx_size[first_model]
if choice == "OpenAI ChatGPT":
model_choices = list(MODEL_CONTEXT_SIZES["OpenAI ChatGPT"].keys())
return [
gr.update(visible=False), # hf_options
gr.update(visible=False), # groq_options
gr.update(visible=True), # openai_options
gr.update(visible=False), # cohere_options
gr.update(visible=False), # glhf_options
gr.update(value=ctx_size), # context_size
gr.update(interactive=True), # send_model_btn
gr.Dropdown(choices=model_choices, value=first_model), # openai_model
gr.update(visible=False) # hf_custom_model visibility
]
elif choice == "HuggingFace Inference":
model_choices = list(MODEL_CONTEXT_SIZES["HuggingFace Inference"].keys())
return [
gr.update(visible=True), # hf_options
gr.update(visible=False), # groq_options
gr.update(visible=False), # openai_options
gr.update(visible=False), # cohere_options
gr.update(visible=False), # glhf_options
gr.update(value=ctx_size), # context_size
gr.update(interactive=True), # send_model_btn
gr.Dropdown(choices=model_choices, value="mistralai/Mistral-7B-Instruct-v0.3"),
gr.update(visible=False) # hf_custom_model initially hidden
]
elif choice == "Groq API":
model_choices = list(model_registry.groq_models.keys())
return [
gr.update(visible=False), # hf_options
gr.update(visible=True), # groq_options
gr.update(visible=False), # openai_options
gr.update(visible=False), # cohere_options
gr.update(visible=False), # glhf_options
gr.update(value=ctx_size), # context_size
gr.update(interactive=True), # send_model_btn
gr.Dropdown(choices=model_choices, value=model_choices[0] if model_choices else None),
gr.update(visible=False) # hf_custom_model visibility
]
elif choice == "Cohere API":
return [
gr.update(visible=False), # hf_options
gr.update(visible=False), # groq_options
gr.update(visible=False), # openai_options
gr.update(visible=True), # cohere_options
gr.update(visible=False), # glhf_options
gr.update(value=ctx_size), # context_size
gr.update(interactive=True), # send_model_btn
gr.Dropdown(choices=[]), # not used
gr.update(visible=False) # hf_custom_model visibility
]
elif choice == "GLHF API":
model_choices = list(MODEL_CONTEXT_SIZES["GLHF API"].keys())
return [
gr.update(visible=False), # hf_options
gr.update(visible=False), # groq_options
gr.update(visible=False), # openai_options
gr.update(visible=False), # cohere_options
gr.update(visible=True), # glhf_options
gr.update(value=ctx_size), # context_size
gr.update(interactive=True), # send_model_btn
gr.Dropdown(choices=[]), # not used
gr.update(visible=False) # hf_custom_model visibility
]
# Default return for "Clipboard only" or other options
return [
gr.update(visible=False), # hf_options
gr.update(visible=False), # groq_options
gr.update(visible=False), # openai_options
gr.update(visible=False), # cohere_options
gr.update(visible=False), # glhf_options
gr.update(value=4096), # context_size
gr.update(interactive=False), # send_model_btn
gr.Dropdown(choices=[]), # not used
gr.update(visible=False) # hf_custom_model visibility
]
def copy_text_js(element_id: str) -> str:
return f"""function() {{
let textarea = document.getElementById('{element_id}');
if (!textarea) return 'Element not found';
textarea.select();
try {{
document.execCommand('copy');
return 'Copied to clipboard!';
}} catch(err) {{
return 'Failed to copy: ' + err;
}}
}}"""
def process_pdf(pdf, fmt, ctx_size):
"""Process PDF and return text and snippets"""
try:
if not pdf:
return "Please upload a PDF file.", "", [], None
# Extract text
text = extract_text_from_pdf(pdf.name)
if text.startswith("Error"):
return text, "", [], None
# Format content
formatted_text = format_content(text, fmt)
# Split into snippets
snippets = split_into_snippets(formatted_text, ctx_size)
# Save full text for download
with tempfile.NamedTemporaryFile(delete=False, mode='w', suffix='.txt') as text_file:
text_file.write(formatted_text)
snippet_choices = [f"Snippet {i+1} of {len(snippets)}" for i in range(len(snippets))]
return (
"PDF processed successfully!",
formatted_text,
snippets,
snippet_choices,
[text_file.name]
)
except Exception as e:
logging.error(f"Error processing PDF: {e}")
return f"Error processing PDF: {str(e)}", "", [], None
def generate_prompt(text, template, snippet_idx=None):
"""Generate prompt from text or selected snippet"""
try:
if not text:
return "No text available.", "", None
default_prompt = "Summarize the following text:"
prompt_template = template if template else default_prompt
if isinstance(text, list):
# If text is list of snippets
if snippet_idx is not None:
if 0 <= snippet_idx < len(text):
content = text[snippet_idx]
else:
return "Invalid snippet index.", "", None
else:
content = "\n\n".join(text)
else:
content = text
prompt = f"{prompt_template}\n---\n{content}\n---"
# Save prompt for download
with tempfile.NamedTemporaryFile(delete=False, mode='w', suffix='.txt') as prompt_file:
prompt_file.write(prompt)
return "Prompt generated!", prompt, [prompt_file.name]
except Exception as e:
logging.error(f"Error generating prompt: {e}")
return f"Error generating prompt: {str(e)}", "", None
# Main Interface
with gr.Blocks(css="""
.gradio-container {max-width: 90%; margin: 0 auto;}
@media (max-width: 768px) {.gradio-container {max-width: 98%; padding: 10px;} .gr-row {flex-direction: column;} .gr-col {width: 100%; margin-bottom: 10px;}}
""") as demo:
# State variables
pdf_content = gr.State("")
snippets = gr.State([])
# Header
gr.Markdown("# π Smart PDF Summarizer")
gr.Markdown("Upload a PDF document and get AI-powered summaries using various AI models.")
with gr.Tabs() as tabs:
# Tab 1: PDF Processing
with gr.Tab("1οΈβ£ PDF Processing"):
with gr.Row():
with gr.Column(scale=1):
pdf_input = gr.File(
label="π Upload PDF",
file_types=[".pdf"]
)
format_type = gr.Radio(
choices=["txt", "md"],
value="txt",
label="π Output Format"
)
context_size = gr.Slider(
minimum=1000,
maximum=200000,
step=1000,
value=4096,
label="Context Size"
)
gr.Markdown("### Context Size")
with gr.Row():
for size_name, size_value in CONTEXT_SIZES.items():
gr.Button(
size_name,
size="sm",
scale=1
).click(
lambda v=size_value: gr.update(value=v),
None,
context_size
)
process_button = gr.Button("π Process PDF", variant="primary")
with gr.Column(scale=1):
progress_status = gr.Textbox(
label="Status",
interactive=False,
show_label=True,
visible=True # Ensure error messages are always visible
)
processed_text = gr.Textbox(
label="Processed Text",
lines=10,
max_lines=50,
show_copy_button=True
)
download_full_text = gr.File(label="π₯ Download Full Text")
# Tab 2: Snippet Selection
with gr.Tab("2οΈβ£ Snippet Selection"):
with gr.Row():
with gr.Column(scale=1):
snippet_selector = gr.Dropdown(
label="Select Snippet",
choices=[],
interactive=True
)
custom_prompt = gr.Textbox(
label="βοΈ Custom Prompt Template",
placeholder="Enter your custom prompt here...",
lines=2
)
generate_prompt_btn = gr.Button("Generate Prompt", variant="primary")
with gr.Column(scale=1):
generated_prompt = gr.Textbox(
label="π Generated Prompt",
lines=10,
max_lines=50,
show_copy_button=True,
elem_id="generated_prompt",
elem_classes="generated_prompt"
)
with gr.Row():
download_prompt = gr.File(label="π₯ Download Prompt")
download_snippet = gr.File(label="π₯ Download Selected Snippet")
# Tab 3: Model Processing
with gr.Tab("3οΈβ£ Model Processing"):
with gr.Row():
with gr.Column(scale=1):
model_choice = gr.Radio(
choices=list(MODEL_CONTEXT_SIZES.keys()),
value="Clipboard only",
label="π€ Provider Selection"
)
# Model-specific option containers
with gr.Column(visible=False) as openai_options:
openai_model = gr.Dropdown(
choices=list(MODEL_CONTEXT_SIZES["OpenAI ChatGPT"].keys()),
value="gpt-3.5-turbo",
label="OpenAI Model"
)
openai_api_key = gr.Textbox(
label="π OpenAI API Key",
type="password"
)
with gr.Column(visible=False) as hf_options:
hf_model = gr.Dropdown(
choices=list(MODEL_CONTEXT_SIZES["HuggingFace Inference"].keys()),
label="π§ HuggingFace Model",
value="mistralai/Mistral-7B-Instruct-v0.3",
allow_custom_value=True
)
hf_custom_model = gr.Textbox(
label="Custom Model ID",
placeholder="Enter custom model ID...",
visible=False
)
hf_api_key = gr.Textbox(
label="π HuggingFace API Key",
type="password"
)
with gr.Column(visible=False) as groq_options:
groq_model = gr.Dropdown(
choices=list(model_registry.groq_models.keys()),
value=list(model_registry.groq_models.keys())[0] if model_registry.groq_models else None,
label="Groq Model"
)
groq_api_key = gr.Textbox(
label="π Groq API Key",
type="password"
)
groq_refresh_btn = gr.Button("π Refresh Groq Models")
with gr.Column(visible=False) as glhf_options:
glhf_api_key = gr.Textbox(
label="π GLHF API Key",
type="password"
)
glhf_model = gr.Dropdown(
choices=list(MODEL_CONTEXT_SIZES["GLHF API"].keys()),
value="mistralai/Mistral-7B-Instruct-v0.3",
label="Model Selection"
)
glhf_custom_model = gr.Textbox(
label="Custom Model ID",
placeholder="Enter custom model ID...",
visible=False
)
with gr.Column(visible=False) as cohere_options:
cohere_api_key = gr.Textbox(
label="π Cohere API Key",
type="password"
)
cohere_model = gr.Dropdown(
choices=list(MODEL_CONTEXT_SIZES["Cohere API"].keys()),
value="command-r-plus-08-2024",
label="Cohere Model"
)
# Action Buttons Row
with gr.Row():
# Copy to Clipboard button with robust fallbacks
copy_button = gr.HTML("""
<div style="text-align: center; margin: 10px;">
<button
onclick="
try {
const promptArea =
document.querySelector('#generated_prompt textarea') ||
document.querySelector('textarea#generated_prompt') ||
document.querySelector('.generated_prompt textarea') ||
Array.from(document.querySelectorAll('textarea')).find(el => el.value.includes('Summarize'));
if (promptArea && promptArea.value) {
navigator.clipboard.writeText(promptArea.value)
.then(() => {
this.textContent = 'β
Copied!';
setTimeout(() => {
this.textContent = 'π Copy to Clipboard';
}, 2000);
})
.catch(err => {
console.error('Modern copy failed:', err);
promptArea.select();
document.execCommand('copy');
this.textContent = 'β
Copied using fallback!';
setTimeout(() => {
this.textContent = 'π Copy to Clipboard';
}, 2000);
});
} else {
this.textContent = 'β No text found';
setTimeout(() => {
this.textContent = 'π Copy to Clipboard';
}, 2000);
}
} catch (err) {
console.error('Copy error:', err);
this.textContent = 'β Copy failed';
setTimeout(() => {
this.textContent = 'π Copy to Clipboard';
}, 2000);
}
"
style="
padding: 10px 20px;
background-color: #2C3E50;
color: white;
border: none;
border-radius: 5px;
font-weight: bold;
cursor: pointer;
transition: background-color 0.3s ease;
"
onmouseover="this.style.backgroundColor='#34495E'"
onmouseout="this.style.backgroundColor='#2C3E50'"
>
π Copy to Clipboard
</button>
</div>
""")
send_to_model_btn = gr.Button("π Send to Model", variant="primary", interactive=False)
# Restore the robust ChatGPT button implementation
chatgpt_button = gr.HTML("""
<div style="text-align: center; margin: 10px;">
<button
onclick="
try {
const promptArea =
document.querySelector('#generated_prompt textarea') ||
document.querySelector('textarea#generated_prompt') ||
document.querySelector('.generated_prompt textarea') ||
Array.from(document.querySelectorAll('textarea')).find(el => el.value.includes('Summarize'));
if (promptArea && promptArea.value) {
navigator.clipboard.writeText(promptArea.value)
.then(() => {
this.textContent = 'β
Copied! Opening ChatGPT...';
setTimeout(() => {
window.open('https://chat.openai.com/', '_blank');
setTimeout(() => {
this.textContent = 'π Copy & Open ChatGPT';
}, 2000);
}, 500);
})
.catch(err => {
console.error('Modern copy failed:', err);
promptArea.select();
document.execCommand('copy');
this.textContent = 'β
Copied! Opening ChatGPT...';
setTimeout(() => {
window.open('https://chat.openai.com/', '_blank');
setTimeout(() => {
this.textContent = 'π Copy & Open ChatGPT';
}, 2000);
}, 500);
});
} else {
this.textContent = 'β No prompt found. Generate one first.';
setTimeout(() => {
this.textContent = 'π Copy & Open ChatGPT';
}, 2000);
}
} catch (err) {
console.error('Copy error:', err);
this.textContent = 'β Copy failed. Try again.';
setTimeout(() => {
this.textContent = 'π Copy & Open ChatGPT';
}, 2000);
}
"
style="
padding: 10px 20px;
background-color: #2C3E50;
color: white;
border: none;
border-radius: 5px;
font-weight: bold;
cursor: pointer;
transition: background-color 0.3s ease;
"
onmouseover="this.style.backgroundColor='#34495E'"
onmouseout="this.style.backgroundColor='#2C3E50'"
>
π Copy & Open ChatGPT
</button>
</div>
""")
# JavaScript for model choice handling
gr.HTML("""
<script>
// Enable/disable send button based on selection
document.querySelector('input[name="model_choice"]').addEventListener('change', function(e) {
const sendButton = document.querySelector('button:contains("Send to Model")');
if (sendButton) {
sendButton.disabled = (e.target.value === 'Clipboard only');
}
});
</script>
""")
# Summary section
with gr.Column(scale=1):
summary_output = gr.Textbox(
label="π Summary",
lines=15,
max_lines=50,
show_copy_button=True,
elem_id="summary_output"
)
# Summary actions row
with gr.Row():
copy_summary_btn = gr.Button("π Copy Summary", size="sm")
download_summary = gr.File(label="π₯ Download Summary")
# Status display
clipboard_status = gr.HTML(elem_id="clipboard_status")
# Hidden components for file handling
download_files = gr.Files(label="π₯ Downloads", visible=False)
# Event Handlers
def update_context_size(size: int) -> None:
"""Update context size slider with validation"""
if not isinstance(size, (int, float)):
size = 4096 # Default size
return gr.update(value=int(size))
def get_model_context_size(choice: str, groq_model: str = None) -> int:
"""Get context size for model with better defaults"""
if choice == "Groq API" and groq_model:
return MODEL_CONTEXT_SIZES["Groq API"].get(groq_model, 4096)
elif choice == "OpenAI ChatGPT":
return 4096
elif choice == "HuggingFace Inference":
return 4096
return 32000 # Safe default
def update_snippet_choices(snippets_list: List[str]) -> List[str]:
"""Create formatted snippet choices"""
return [f"Snippet {i+1} of {len(snippets_list)}" for i in range(len(snippets_list))]
def get_snippet_index(choice: str) -> int:
"""Extract snippet index from choice string"""
if not choice:
return 0
try:
return int(choice.split()[1]) - 1
except:
return 0
def toggle_model_options(choice):
return (
gr.update(visible=choice == "HuggingFace Inference"), # hf_options
gr.update(visible=choice == "Groq API"), # groq_options
gr.update(visible=choice == "OpenAI ChatGPT"), # openai_options
gr.update(visible=choice == "Cohere API"), # cohere_options
gr.update(visible=choice == "GLHF API") # glhf_options
)
def refresh_groq_models_list():
try:
with gr.Progress() as progress:
progress(0, "Refreshing Groq models...")
updated_models = model_registry.refresh_groq_models()
progress(1, "Complete!")
return gr.update(choices=list(updated_models.keys()))
except Exception as e:
logging.error(f"Error refreshing models: {e}")
return gr.update()
def toggle_custom_model(model_name):
return gr.update(visible=model_name == "Custom Model")
def handle_groq_model_change(model_name):
"""Handle Groq model selection change"""
return update_context_size("Groq API", model_name)
# PDF Processing Handlers
def handle_pdf_process(pdf, fmt, ctx_size): # Remove md_eng parameter
if not pdf:
return "Please upload a PDF file.", "", "", [], gr.update(choices=[], value=None), None
try:
text = extract_text_from_pdf(pdf.name, format_type=fmt) # Just use format_type
if text.startswith("Error"):
return text, "", "", [], gr.update(choices=[], value=None), None
# The important part: still do snippets processing
snippets_list = split_into_snippets(text, ctx_size)
snippet_choices = update_snippet_choices(snippets_list)
with tempfile.NamedTemporaryFile(delete=False, mode='w', suffix=f'.{fmt}') as f:
f.write(text)
download_file = f.name
return (
f"PDF processed successfully! Generated {len(snippets_list)} snippets.",
text,
text,
snippets_list,
gr.update(choices=snippet_choices, value=snippet_choices[0] if snippet_choices else None),
download_file
)
except Exception as e:
error_msg = f"Error processing PDF: {str(e)}"
logging.error(error_msg)
return error_msg, "", "", [], gr.update(choices=[], value=None), None
def handle_snippet_selection(choice, snippets_list): # Add download_snippet output
"""Handle snippet selection, update prompt, and provide snippet download."""
if not snippets_list:
return "No snippets available.", "", None # Return None for download
try:
idx = get_snippet_index(choice)
selected_snippet = snippets_list[idx]
with tempfile.NamedTemporaryFile(delete=False, mode='w', suffix='.txt') as f:
f.write(selected_snippet)
snippet_download_file = f.name # Store the file path
return (
f"Selected snippet {idx + 1}",
selected_snippet,
snippet_download_file # Return file for download
)
except Exception as e:
error_msg = f"Error selecting snippet: {str(e)}"
logging.error(error_msg)
return (
error_msg,
"",
None
)
# Copy button handlers
def handle_prompt_generation(snippet_text, template, snippet_choice, snippets_list):
try:
if not snippets_list:
return "No text available.", "", None
idx = get_snippet_index(snippet_choice)
base_prompt = template if template else "Summarize the following text:"
content = snippets_list[idx]
prompt = f"{base_prompt}\n---\n{content}\n---"
# Save prompt for download
with tempfile.NamedTemporaryFile(delete=False, mode='w', suffix='.txt') as f:
f.write(prompt)
download_file = f.name
return "Prompt generated!", prompt, download_file # Return the file for download_prompt
except Exception as e:
logging.error(f"Error generating prompt: {e}")
return f"Error: {str(e)}", "", None
def handle_copy_action(text):
"""Handle copy to clipboard action"""
return {
progress_status: gr.update(value="Text copied to clipboard!", visible=True)
}
# Connect all event handlers
# Core event handlers
process_button.click(
handle_pdf_process,
inputs=[pdf_input, format_type, context_size],
outputs=[progress_status, processed_text, pdf_content, snippets, snippet_selector, download_full_text]
)
generate_prompt_btn.click(
handle_prompt_generation,
inputs=[generated_prompt, custom_prompt, snippet_selector, snippets],
outputs=[progress_status, generated_prompt, download_prompt]
)
# copy_button.click(
# fn=copy_to_clipboard,
# inputs=[generated_prompt],
# outputs=[clipboard_status]
# )
# copy_summary_btn.click(
# fn=None,
# inputs=[],
# outputs=[],
# _js=copy_summary_js
# )
# Snippet handling
snippet_selector.change(
handle_snippet_selection,
inputs=[snippet_selector, snippets],
outputs=[progress_status, generated_prompt, download_snippet] # Connect download_snippet
)
# Model selection
model_choice.change(
handle_model_selection,
inputs=[model_choice],
outputs=[
hf_options,
groq_options,
openai_options,
cohere_options,
glhf_options,
context_size,
send_to_model_btn,
hf_model, # For updating model choices
hf_custom_model # Add this to update custom model visibility
]
)
hf_model.change(
toggle_custom_model,
inputs=[hf_model],
outputs=[hf_custom_model]
)
groq_model.change(
handle_groq_model_change,
inputs=[groq_model],
outputs=[context_size]
)
def download_file(content: str, prefix: str) -> List[str]:
if not content:
return []
try:
filename = f"{prefix}_{int(time.time())}.txt" # Add timestamp
with tempfile.NamedTemporaryFile(delete=False, mode='w', suffix='.txt', prefix=filename) as f:
f.write(content)
return [f.name]
except Exception as e:
logging.error(f"Error creating download file: {e}")
return []
# Model processing
send_to_model_btn.click(
fn=send_to_model,
inputs=[
generated_prompt,
model_choice,
hf_model,
hf_custom_model,
hf_api_key,
groq_model,
groq_api_key,
openai_api_key,
openai_model,
cohere_api_key,
cohere_model,
glhf_api_key,
glhf_model,
glhf_custom_model
],
outputs=[
clipboard_status, # HTML component for clipboard status
summary_output, # Textbox for summary
download_summary # File component for download
]
)
groq_refresh_btn.click(
refresh_groq_models_list,
outputs=[groq_model]
)
# Instructions
gr.Markdown("""
### π Instructions:
1. Upload a PDF document
2. Choose output format and context window size
3. Select snippet number (default: 1) or enter custom prompt
4. Select your preferred model in case you want to proceed directly (or continue with 5):
- OpenAI ChatGPT: Manual copy/paste workflow
- HuggingFace Inference: Direct API integration
- Groq API: High-performance inference
5. Click 'Process PDF' to generate summary
6. Use 'Copy Prompt' and, optionally, 'Open ChatGPT' for manual processing
7. Download generated files as needed
""")
# Launch the interface
if __name__ == "__main__":
demo.launch(share=False, debug=True) |