File size: 9,094 Bytes
0ae08d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import logging
from pathlib import Path
from typing import List, Dict, Union, Optional
import re
import openai
import requests
from PyPDF2 import PdfReader
from gradio_client import Client

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)

def extract_text_from_pdf(file_path: str) -> str:
    """
    Extract text from a PDF file with robust error handling.
    
    Args:
        file_path: Path to the PDF file
        
    Returns:
        Extracted text as a string
        
    Raises:
        ValueError: If file doesn't exist or isn't readable
        RuntimeError: If text extraction fails
    """
    try:
        if not Path(file_path).exists():
            raise ValueError(f"PDF file not found: {file_path}")
        
        reader = PdfReader(file_path)
        text_content = []
        
        for page_num, page in enumerate(reader.pages, 1):
            try:
                text = page.extract_text()
                if text.strip():
                    text_content.append(text)
                else:
                    logger.warning(f"Page {page_num} appears to be empty or unreadable")
            except Exception as e:
                logger.error(f"Error extracting text from page {page_num}: {str(e)}")
                continue
        
        if not text_content:
            raise RuntimeError("No readable text found in PDF")
        
        return "\n\n".join(text_content)
    
    except Exception as e:
        logger.error(f"PDF extraction failed: {str(e)}")
        raise RuntimeError(f"Failed to process PDF: {str(e)}")

def format_content(text: str, format_type: str) -> str:
    """
    Format extracted text into the specified output format.
    
    Args:
        text: Raw text content
        format_type: Output format ('txt', 'md', 'html')
        
    Returns:
        Formatted text string
        
    Raises:
        ValueError: If format type is invalid
    """
    if not isinstance(text, str):
        raise ValueError("Input text must be a string")

    # Clean up common PDF extraction artifacts
    text = re.sub(r'\s+', ' ', text)  # Normalize whitespace
    text = re.sub(r'(?<=[.!?])\s+', '\n\n', text)  # Split sentences into paragraphs
    text = text.strip()

    if format_type.lower() == 'txt':
        return text
    
    elif format_type.lower() == 'md':
        paragraphs = text.split('\n\n')
        md_text = []
        
        for para in paragraphs:
            # Detect and format headers
            if re.match(r'^[A-Z][^.!?]*$', para.strip()):
                md_text.append(f"## {para.strip()}")
            else:
                md_text.append(para.strip())
        
        return '\n\n'.join(md_text)
    
    elif format_type.lower() == 'html':
        paragraphs = text.split('\n\n')
        html_parts = ['<!DOCTYPE html>', '<html>', '<body>']
        
        for para in paragraphs:
            if re.match(r'^[A-Z][^.!?]*$', para.strip()):
                html_parts.append(f"<h2>{para.strip()}</h2>")
            else:
                html_parts.append(f"<p>{para.strip()}</p>")
        
        html_parts.extend(['</body>', '</html>'])
        return '\n'.join(html_parts)
    
    else:
        raise ValueError(f"Unsupported format type: {format_type}")

def split_into_snippets(text: str, chunk_size: int = 4000, overlap: int = 200) -> List[str]:
    """
    Split text into overlapping chunks that fit within model context windows.
    
    Args:
        text: Input text to split
        chunk_size: Maximum size of each chunk
        overlap: Number of characters to overlap between chunks
        
    Returns:
        List of text snippets
        
    Raises:
        ValueError: If chunk_size is too small or text is empty
    """
    if not text:
        raise ValueError("Input text is empty")
    
    if chunk_size < 1000:
        raise ValueError("Chunk size must be at least 1000 characters")
    
    # Split into paragraphs first
    paragraphs = text.split('\n\n')
    chunks = []
    current_chunk = []
    current_size = 0
    
    for para in paragraphs:
        para_size = len(para)
        
        if current_size + para_size <= chunk_size:
            current_chunk.append(para)
            current_size += para_size + 2  # +2 for newlines
        else:
            if current_chunk:
                chunks.append('\n\n'.join(current_chunk))
            
            # Start new chunk with overlap
            if chunks:
                overlap_text = chunks[-1][-overlap:] if overlap > 0 else ""
                current_chunk = [overlap_text, para]
                current_size = len(overlap_text) + para_size + 2
            else:
                current_chunk = [para]
                current_size = para_size
    
    # Add the last chunk if it exists
    if current_chunk:
        chunks.append('\n\n'.join(current_chunk))
    
    return chunks

def build_prompts(chunks: List[str], custom_prompt: Optional[str] = None) -> List[str]:
    """
    Build formatted prompts for each text chunk.
    
    Args:
        chunks: List of text chunks
        custom_prompt: Optional custom instruction
        
    Returns:
        List of formatted prompt strings
    """
    default_prompt = """Please analyze and summarize the following text. Focus on:
1. Key points and main ideas
2. Important details and supporting evidence
3. Any conclusions or recommendations

Please maintain the original meaning while being concise."""

    instruction = custom_prompt if custom_prompt else default_prompt
    prompts = []
    
    for i, chunk in enumerate(chunks, 1):
        prompt = f"""### Instruction
{instruction}

### Input Text (Part {i} of {len(chunks)})
{chunk}

### End of Input Text

Please provide your summary below:"""
        prompts.append(prompt)
    
    return prompts

def process_with_model(
    prompt: str,
    model_choice: str,
    api_key: Optional[str] = None,
    oauth_token: Optional[str] = None
) -> str:
    """
    Process text with selected model.
    
    Args:
        prompt: Input prompt
        model_choice: Selected model name
        api_key: OpenAI API key for GPT models
        oauth_token: Hugging Face token for other models
        
    Returns:
        Generated summary
        
    Raises:
        ValueError: If required credentials are missing
        RuntimeError: If model processing fails
    """
    try:
        if 'gpt' in model_choice.lower():
            if not api_key:
                raise ValueError("OpenAI API key required for GPT models")
            
            openai.api_key = api_key
            response = openai.ChatCompletion.create(
                model="gpt-3.5-turbo" if "3.5" in model_choice else "gpt-4",
                messages=[{"role": "user", "content": prompt}],
                temperature=0.7,
                max_tokens=1500
            )
            return response.choices[0].message.content
        
        else:  # Hugging Face models
            if not oauth_token:
                raise ValueError("Hugging Face token required")
            
            headers = {"Authorization": f"Bearer {oauth_token}"}
            
            # Map model choice to actual model ID
            model_map = {
                "Claude-3": "anthropic/claude-3-opus-20240229",
                "Mistral": "mistralai/Mixtral-8x7B-Instruct-v0.1"
            }
            
            model_id = model_map.get(model_choice)
            if not model_id:
                raise ValueError(f"Unknown model: {model_choice}")
            
            response = requests.post(
                f"https://api-inference.huggingface.co/models/{model_id}",
                headers=headers,
                json={"inputs": prompt}
            )
            
            if response.status_code != 200:
                raise RuntimeError(f"Model API error: {response.text}")
            
            return response.json()[0]["generated_text"]
            
    except Exception as e:
        logger.error(f"Model processing failed: {str(e)}")
        raise RuntimeError(f"Failed to process with model: {str(e)}")

def validate_api_keys(openai_key: Optional[str] = None, hf_token: Optional[str] = None) -> Dict[str, bool]:
    """
    Validate API keys for different services.
    
    Args:
        openai_key: OpenAI API key
        hf_token: Hugging Face token
        
    Returns:
        Dictionary with validation results
    """
    results = {"openai": False, "huggingface": False}
    
    if openai_key:
        try:
            openai.api_key = openai_key
            openai.Model.list()
            results["openai"] = True
        except:
            pass
    
    if hf_token:
        try:
            response = requests.get(
                "https://huggingface.co/api/models",
                headers={"Authorization": f"Bearer {hf_token}"}
            )
            results["huggingface"] = response.status_code == 200
        except:
            pass
    
    return results