Spaces:
Runtime error
Runtime error
import os | |
from typing import List | |
from chainlit.types import AskFileResponse | |
from aimakerspace.text_utils import CharacterTextSplitter, PDFFileLoader | |
from aimakerspace.openai_utils.prompts import ( | |
UserRolePrompt, | |
SystemRolePrompt, | |
AssistantRolePrompt, | |
) | |
from aimakerspace.openai_utils.embedding import EmbeddingModel | |
from aimakerspace.vectordatabase import VectorDatabase | |
from aimakerspace.openai_utils.chatmodel import ChatOpenAI | |
import chainlit as cl | |
import asyncio | |
import nest_asyncio | |
nest_asyncio.apply() | |
import langchain_community | |
from langchain_community.document_loaders import PyMuPDFLoader | |
import langchain | |
from langchain.prompts import ChatPromptTemplate | |
filepath_NIST = "data/NIST.AI.600-1.pdf" | |
filepath_Blueprint = "data/Blueprint-for-an-AI-Bill-of-Rights.pdf" | |
documents_NIST = PyMuPDFLoader(filepath_NIST).load() | |
documents_Blueprint = PyMuPDFLoader(filepath_Blueprint).load() | |
documents = documents_NIST + documents_Blueprint | |
# pdf_loader_NIST = PDFFileLoader("data/NIST.AI.600-1.pdf") | |
# pdf_loader_Blueprint = PDFFileLoader("data/Blueprint-for-an-AI-Bill-of-Rights.pdf") | |
# documents_NIST = pdf_loader_NIST.load_documents() | |
# documents_Blueprint = pdf_loader_Blueprint.load_documents() | |
# text_splitter = CharacterTextSplitter() | |
# split_documents_NIST = text_splitter.split_texts(documents_NIST) | |
# split_documents_Blueprint = text_splitter.split_texts(documents_Blueprint) | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size = 500, | |
chunk_overlap = 50 | |
) | |
rag_documents = text_splitter.split_documents(documents) | |
RAG_PROMPT = """\ | |
Given a provided context and question, you must answer the question based only on context. | |
If you cannot answer the question based on the context - you must say "I don't know". | |
Context: {context} | |
Question: {question} | |
""" | |
rag_prompt = ChatPromptTemplate.from_template(RAG_PROMPT) | |
USER_PROMPT_TEMPLATE = """ \ | |
Context: | |
{context} | |
User Query: | |
{user_query} | |
""" | |
user_prompt = UserRolePrompt(USER_PROMPT_TEMPLATE) | |
class RetrievalAugmentedQAPipeline: | |
def __init__(self, llm: ChatOpenAI(), vector_db_retriever: VectorDatabase) -> None: | |
self.llm = llm | |
self.vector_db_retriever = vector_db_retriever | |
async def arun_pipeline(self, user_query: str): | |
context_list = self.vector_db_retriever.search_by_text(user_query, k=4) | |
context_prompt = "" | |
for context in context_list: | |
context_prompt += context[0] + "\n" | |
formatted_system_prompt = rag_prompt.create_message() | |
formatted_user_prompt = user_prompt.create_message(user_query=user_query, context=context_prompt) | |
async def generate_response(): | |
async for chunk in self.llm.astream([formatted_system_prompt, formatted_user_prompt]): | |
yield chunk | |
return {"response": generate_response(), "context": context_list} | |
# ------------------------------------------------------------ | |
# marks a function that will be executed at the start of a user session | |
async def start_chat(): | |
# settings = { | |
# "model": "gpt-3.5-turbo", | |
# "temperature": 0, | |
# "max_tokens": 500, | |
# "top_p": 1, | |
# "frequency_penalty": 0, | |
# "presence_penalty": 0, | |
# } | |
# Create a dict vector store | |
vector_db = VectorDatabase() | |
vector_db = await vector_db.abuild_from_list(split_documents_NIST) | |
vector_db = await vector_db.abuild_from_list(split_documents_Blueprint) | |
chat_openai = ChatOpenAI() | |
# Create a chain | |
retrieval_augmented_qa_pipeline = RetrievalAugmentedQAPipeline( | |
vector_db_retriever=vector_db, | |
llm=chat_openai | |
) | |
# cl.user_session.set("settings", settings) | |
cl.user_session.set("chain", retrieval_augmented_qa_pipeline) | |
# marks a function that should be run each time the chatbot receives a message from a user | |
async def main(message): | |
chain = cl.user_session.get("chain") | |
msg = cl.Message(content="") | |
result = await chain.arun_pipeline(message.content) | |
async for stream_resp in result["response"]: | |
await msg.stream_token(stream_resp) | |
await msg.send() | |