Spaces:
Runtime error
Runtime error
File size: 8,679 Bytes
97d12e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
# performance_system.py
from datetime import datetime, timedelta
import pandas as pd
import numpy as np
from typing import Dict, List, Optional, Tuple
import json
import logging
# Configuração de logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
class PerformanceConstants:
"""Constantes para análise de desempenho"""
MINIMUM_STUDY_HOURS = 4.0
IDEAL_CONSISTENCY = 0.7
LOW_PERFORMANCE_THRESHOLD = 0.3
MEDIUM_PERFORMANCE_THRESHOLD = 0.6
MIN_DAYS_FOR_TREND = 7
MAX_DAYS_ANALYSIS = 30
class PerformanceAnalyzer:
# [O código existente permanece o mesmo]
def get_performance_metrics(self, user_id: str, days: int = 30) -> Dict:
"""Obtém métricas detalhadas de desempenho"""
try:
cursor = self.conn.cursor()
end_date = datetime.now().date()
start_date = end_date - timedelta(days=days)
cursor.execute('''
SELECT date, topic, horas_estudadas, performance_score
FROM study_progress
WHERE user_id = ? AND date BETWEEN ? AND ?
ORDER BY date
''', (user_id, start_date, end_date))
data = cursor.fetchall()
metrics = {
"daily_metrics": {},
"topic_metrics": {},
"overall_metrics": {
"total_hours": 0,
"avg_performance": 0,
"study_days": 0
}
}
for date, topic, hours, score in data:
# Métricas diárias
if date not in metrics["daily_metrics"]:
metrics["daily_metrics"][date] = {
"hours": 0,
"topics": set()
}
metrics["daily_metrics"][date]["hours"] += hours
metrics["daily_metrics"][date]["topics"].add(topic)
# Métricas por tópico
if topic not in metrics["topic_metrics"]:
metrics["topic_metrics"][topic] = {
"total_hours": 0,
"scores": [],
"last_study": None
}
metrics["topic_metrics"][topic]["total_hours"] += hours
metrics["topic_metrics"][topic]["scores"].append(score)
metrics["topic_metrics"][topic]["last_study"] = date
# Métricas gerais
metrics["overall_metrics"]["total_hours"] += hours
# Calcular médias e estatísticas
if data:
all_scores = [score for _, _, _, score in data]
metrics["overall_metrics"]["avg_performance"] = np.mean(all_scores)
metrics["overall_metrics"]["study_days"] = len(metrics["daily_metrics"])
return metrics
except Exception as e:
logger.error(f"Erro ao obter métricas de desempenho: {e}")
return None
class StudyMaterialGenerator:
# [O código existente permanece o mesmo]
def generate_daily_plan(self, user_id: str,
available_hours: float,
performance_data: Dict) -> Dict[str, any]:
"""Gera plano de estudos diário personalizado"""
try:
weak_areas = sorted(
performance_data["topic_metrics"].items(),
key=lambda x: np.mean(x[1]["scores"]) if x[1]["scores"] else 0
)
plan = {
"distribuicao_horas": {},
"prioridades": [],
"recursos_sugeridos": []
}
# Distribuir horas disponíveis
remaining_hours = available_hours
for area, metrics in weak_areas:
if remaining_hours <= 0:
break
# Áreas com desempenho mais baixo recebem mais tempo
weight = 1 - (np.mean(metrics["scores"]) if metrics["scores"] else 0)
hours_allocated = min(remaining_hours, available_hours * weight)
plan["distribuicao_horas"][area] = round(hours_allocated, 1)
remaining_hours -= hours_allocated
# Adicionar recursos recomendados
plan["recursos_sugeridos"].extend(
self.get_recommended_resources(area, metrics)
)
return plan
except Exception as e:
logger.error(f"Erro ao gerar plano diário: {e}")
return None
def get_recommended_resources(self, area: str,
metrics: Dict) -> List[str]:
"""Retorna recursos recomendados baseados no desempenho"""
resources = []
avg_score = np.mean(metrics["scores"]) if metrics["scores"] else 0
if avg_score < 0.3:
resources.extend([
"📚 Material básico teórico",
"📝 Resumos esquematizados",
"🎥 Vídeo-aulas introdutórias"
])
elif avg_score < 0.6:
resources.extend([
"📋 Questões comentadas",
"🏥 Casos clínicos simples",
"📊 Mapas mentais avançados"
])
else:
resources.extend([
"🎯 Questões complexas",
"🏥 Casos clínicos avançados",
"📑 Artigos científicos"
])
return resources
class ProgressTracker:
# [O código existente permanece o mesmo]
def calculate_study_streak(self, user_id: str) -> Dict[str, any]:
"""Calcula sequência atual de estudos"""
try:
cursor = self.conn.cursor()
cursor.execute('''
SELECT DISTINCT date
FROM study_progress
WHERE user_id = ?
ORDER BY date DESC
''', (user_id,))
dates = [row[0] for row in cursor.fetchall()]
if not dates:
return {
"current_streak": 0,
"longest_streak": 0,
"last_study_date": None
}
current_streak = 1
longest_streak = 1
current_date = datetime.strptime(dates[0], '%Y-%m-%d').date()
for i in range(1, len(dates)):
date = datetime.strptime(dates[i], '%Y-%m-%d').date()
if (current_date - date).days == 1:
current_streak += 1
longest_streak = max(longest_streak, current_streak)
else:
break
current_date = date
return {
"current_streak": current_streak,
"longest_streak": longest_streak,
"last_study_date": dates[0]
}
except Exception as e:
logger.error(f"Erro ao calcular sequência de estudos: {e}")
return None
def initialize_performance_system(db_connection) -> Tuple[PerformanceAnalyzer,
StudyMaterialGenerator,
ProgressTracker]:
"""Inicializa o sistema de performance completo"""
try:
analyzer = PerformanceAnalyzer(db_connection)
material_gen = StudyMaterialGenerator(db_connection)
tracker = ProgressTracker(db_connection)
return analyzer, material_gen, tracker
except Exception as e:
logger.error(f"Erro ao inicializar sistema de performance: {e}")
return None, None, None
if __name__ == "__main__":
# Código para testes
import sqlite3
try:
conn = sqlite3.connect('revalida.db')
analyzer, material_gen, tracker = initialize_performance_system(conn)
# Teste básico
test_user = "test_user_1"
metrics = analyzer.get_performance_metrics(test_user)
if metrics:
print("Sistema funcionando corretamente")
print(f"Métricas obtidas: {json.dumps(metrics, indent=2)}")
except Exception as e:
print(f"Erro nos testes: {e}")
finally:
conn.close() |