synls / GAN /timevae.py
danlin1128's picture
Upload 33 files
67069a4 verified
raw
history blame
18 kB
import os, warnings
warnings.filterwarnings('ignore')
from abc import ABC, abstractmethod
import numpy as np
import joblib
import tensorflow as tf
from tensorflow.keras import backend as K
from tensorflow.keras.layers import Conv1D, Flatten, Dense, Conv1DTranspose, Reshape, Input, Layer
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.metrics import Mean
from tensorflow.keras.backend import random_normal
class Sampling(Layer):
"""Uses (z_mean, z_log_var) to sample z, the vector encoding a digit."""
def call(self, inputs):
z_mean, z_log_var = inputs
batch = tf.shape(z_mean)[0]
dim = tf.shape(z_mean)[1]
epsilon = random_normal(shape=(batch, dim))
return z_mean + tf.exp(0.5 * z_log_var) * epsilon
class BaseVariationalAutoencoder(Model, ABC):
def __init__(self,
seq_len,
feat_dim,
latent_dim,
reconstruction_wt=3.0,
**kwargs):
super(BaseVariationalAutoencoder, self).__init__(**kwargs)
self.seq_len = seq_len
self.feat_dim = feat_dim
self.latent_dim = latent_dim
self.reconstruction_wt = reconstruction_wt
self.total_loss_tracker = Mean(name="total_loss")
self.reconstruction_loss_tracker = Mean(name="reconstruction_loss")
self.kl_loss_tracker = Mean(name="kl_loss")
self.encoder = None
self.decoder = None
def call(self, X):
z_mean, _, _ = self.encoder(X)
x_decoded = self.decoder(z_mean)
if len(x_decoded.shape) == 1: x_decoded = x_decoded.reshape((1, -1))
return x_decoded
def get_num_trainable_variables(self):
trainableParams = int(np.sum([np.prod(v.get_shape()) for v in self.trainable_weights]))
nonTrainableParams = int(np.sum([np.prod(v.get_shape()) for v in self.non_trainable_weights]))
totalParams = trainableParams + nonTrainableParams
return trainableParams, nonTrainableParams, totalParams
def get_prior_samples(self, num_samples):
Z = np.random.randn(num_samples, self.latent_dim)
samples = self.decoder.predict(Z)
return samples
def get_prior_samples_given_Z(self, Z):
samples = self.decoder.predict(Z)
return samples
@abstractmethod
def _get_encoder(self, **kwargs):
raise NotImplementedError
@abstractmethod
def _get_decoder(self, **kwargs):
raise NotImplementedError
def summary(self):
self.encoder.summary()
self.decoder.summary()
def _get_reconstruction_loss(self, X, X_recons):
def get_reconst_loss_by_axis(X, X_c, axis):
x_r = tf.reduce_mean(X, axis=axis)
x_c_r = tf.reduce_mean(X_recons, axis=axis)
err = tf.math.squared_difference(x_r, x_c_r)
loss = tf.reduce_sum(err)
return loss
# overall
err = tf.math.squared_difference(X, X_recons)
reconst_loss = tf.reduce_sum(err)
reconst_loss += get_reconst_loss_by_axis(X, X_recons, axis=[2]) # by time axis
# reconst_loss += get_reconst_loss_by_axis(X, X_recons, axis=[1]) # by feature axis
return reconst_loss
def train_step(self, X):
with tf.GradientTape() as tape:
z_mean, z_log_var, z = self.encoder(X)
reconstruction = self.decoder(z)
reconstruction_loss = self._get_reconstruction_loss(X, reconstruction)
kl_loss = -0.5 * (1 + z_log_var - tf.square(z_mean) - tf.exp(z_log_var))
kl_loss = tf.reduce_sum(tf.reduce_sum(kl_loss, axis=1))
# kl_loss = kl_loss / self.latent_dim
total_loss = self.reconstruction_wt * reconstruction_loss + kl_loss
grads = tape.gradient(total_loss, self.trainable_weights)
self.optimizer.apply_gradients(zip(grads, self.trainable_weights))
self.total_loss_tracker.update_state(total_loss)
self.reconstruction_loss_tracker.update_state(reconstruction_loss)
self.kl_loss_tracker.update_state(kl_loss)
return {
"loss": self.total_loss_tracker.result(),
"reconstruction_loss": self.reconstruction_loss_tracker.result(),
"kl_loss": self.kl_loss_tracker.result(),
}
def test_step(self, X):
z_mean, z_log_var, z = self.encoder(X)
reconstruction = self.decoder(z)
reconstruction_loss = self._get_reconstruction_loss(X, reconstruction)
kl_loss = -0.5 * (1 + z_log_var - tf.square(z_mean) - tf.exp(z_log_var))
kl_loss = tf.reduce_sum(tf.reduce_sum(kl_loss, axis=1))
# kl_loss = kl_loss / self.latent_dim
total_loss = self.reconstruction_wt * reconstruction_loss + kl_loss
self.total_loss_tracker.update_state(total_loss)
self.reconstruction_loss_tracker.update_state(reconstruction_loss)
self.kl_loss_tracker.update_state(kl_loss)
return {
"loss": self.total_loss_tracker.result(),
"reconstruction_loss": self.reconstruction_loss_tracker.result(),
"kl_loss": self.kl_loss_tracker.result(),
}
def save_weights(self, model_dir, file_pref):
encoder_wts = self.encoder.get_weights()
decoder_wts = self.decoder.get_weights()
joblib.dump(encoder_wts, os.path.join(model_dir, f'{file_pref}encoder_wts.h5'))
joblib.dump(decoder_wts, os.path.join(model_dir, f'{file_pref}decoder_wts.h5'))
def load_weights(self, model_dir, file_pref):
encoder_wts = joblib.load(os.path.join(model_dir, f'{file_pref}encoder_wts.h5'))
decoder_wts = joblib.load(os.path.join(model_dir, f'{file_pref}decoder_wts.h5'))
self.encoder.set_weights(encoder_wts)
self.decoder.set_weights(decoder_wts)
def save(self, model_dir, file_pref):
self.save_weights(model_dir, file_pref)
dict_params = {
'seq_len': self.seq_len,
'feat_dim': self.feat_dim,
'latent_dim': self.latent_dim,
'reconstruction_wt': self.reconstruction_wt,
'hidden_layer_sizes': self.hidden_layer_sizes,
}
params_file = os.path.join(model_dir, f'{file_pref}parameters.pkl')
joblib.dump(dict_params, params_file)
class TimeVAE(BaseVariationalAutoencoder):
def __init__(self, hidden_layer_sizes, trend_poly=0, num_gen_seas=0, custom_seas=None,
use_scaler=False, use_residual_conn=True, **kwargs):
'''
hidden_layer_sizes: list of number of filters in convolutional layers in encoder and residual connection of decoder.
trend_poly: integer for number of orders for trend component. e.g. setting trend_poly = 2 will include linear and quadratic term.
num_gen_seas: Number of sine-waves to use to model seasonalities. Each sine wae will have its own amplitude, frequency and phase.
custom_seas: list of tuples of (num_seasons, len_per_season).
num_seasons: number of seasons per cycle.
len_per_season: number of epochs (time-steps) per season.
use_residual_conn: boolean value indicating whether to use a residual connection for reconstruction in addition to
trend, generic and custom seasonalities.
'''
super(TimeVAE, self).__init__(**kwargs)
self.hidden_layer_sizes = hidden_layer_sizes
self.trend_poly = trend_poly
self.num_gen_seas = num_gen_seas
self.custom_seas = custom_seas
self.use_scaler = use_scaler
self.use_residual_conn = use_residual_conn
self.encoder = self._get_encoder()
self.decoder = self._get_decoder()
def _get_encoder(self):
encoder_inputs = Input(shape=(self.seq_len, self.feat_dim), name='encoder_input')
x = encoder_inputs
for i, num_filters in enumerate(self.hidden_layer_sizes):
x = Conv1D(
filters=num_filters,
kernel_size=3,
strides=2,
activation='relu',
padding='same',
name=f'enc_conv_{i}')(x)
x = Flatten(name='enc_flatten')(x)
# save the dimensionality of this last dense layer before the hidden state layer. We need it in the decoder.
self.encoder_last_dense_dim = x.get_shape()[-1]
z_mean = Dense(self.latent_dim, name="z_mean")(x)
z_log_var = Dense(self.latent_dim, name="z_log_var")(x)
encoder_output = Sampling()([z_mean, z_log_var])
self.encoder_output = encoder_output
encoder = Model(encoder_inputs, [z_mean, z_log_var, encoder_output], name="encoder")
return encoder
def _get_decoder(self):
decoder_inputs = Input(shape=(int(self.latent_dim)), name='decoder_input')
outputs = None
outputs = self.level_model(decoder_inputs)
# trend polynomials
if self.trend_poly is not None and self.trend_poly > 0:
trend_vals = self.trend_model(decoder_inputs)
outputs = trend_vals if outputs is None else outputs + trend_vals
# # generic seasonalities
# if self.num_gen_seas is not None and self.num_gen_seas > 0:
# gen_seas_vals, freq, phase, amplitude = self.generic_seasonal_model(decoder_inputs)
# # gen_seas_vals = self.generic_seasonal_model2(decoder_inputs)
# outputs = gen_seas_vals if outputs is None else outputs + gen_seas_vals
# custom seasons
if self.custom_seas is not None and len(self.custom_seas) > 0:
cust_seas_vals = self.custom_seasonal_model(decoder_inputs)
outputs = cust_seas_vals if outputs is None else outputs + cust_seas_vals
if self.use_residual_conn:
residuals = self._get_decoder_residual(decoder_inputs)
outputs = residuals if outputs is None else outputs + residuals
if self.use_scaler and outputs is not None:
scale = self.scale_model(decoder_inputs)
outputs *= scale
# outputs = Activation(activation='sigmoid')(outputs)
if outputs is None:
raise Exception('''Error: No decoder model to use.
You must use one or more of:
trend, generic seasonality(ies), custom seasonality(ies), and/or residual connection. ''')
decoder = Model(decoder_inputs, [outputs], name="decoder")
return decoder
def level_model(self, z):
level_params = Dense(self.feat_dim, name="level_params", activation='relu')(z)
level_params = Dense(self.feat_dim, name="level_params2")(level_params)
level_params = Reshape(target_shape=(1, self.feat_dim))(level_params) # shape: (N, 1, D)
ones_tensor = tf.ones(shape=[1, self.seq_len, 1], dtype=tf.float32) # shape: (1, T, D)
level_vals = level_params * ones_tensor
return level_vals
def scale_model(self, z):
scale_params = Dense(self.feat_dim, name="scale_params", activation='relu')(z)
scale_params = Dense(self.feat_dim, name="scale_params2")(scale_params)
scale_params = Reshape(target_shape=(1, self.feat_dim))(scale_params) # shape: (N, 1, D)
scale_vals = tf.repeat(scale_params, repeats=self.seq_len, axis=1) # shape: (N, T, D)
return scale_vals
def trend_model(self, z):
trend_params = Dense(self.feat_dim * self.trend_poly, name="trend_params", activation='relu')(z)
trend_params = Dense(self.feat_dim * self.trend_poly, name="trend_params2")(trend_params)
trend_params = Reshape(target_shape=(self.feat_dim, self.trend_poly))(trend_params) # shape: N x D x P
lin_space = K.arange(0, float(self.seq_len), 1) / self.seq_len # shape of lin_space : 1d tensor of length T
poly_space = K.stack([lin_space ** float(p + 1) for p in range(self.trend_poly)], axis=0) # shape: P x T
trend_vals = K.dot(trend_params, poly_space) # shape (N, D, T)
trend_vals = tf.transpose(trend_vals, perm=[0, 2, 1]) # shape: (N, T, D)
trend_vals = K.cast(trend_vals, tf.float32)
return trend_vals
def custom_seasonal_model(self, z):
N = tf.shape(z)[0]
ones_tensor = tf.ones(shape=[N, self.feat_dim, self.seq_len], dtype=tf.int32)
all_seas_vals = []
for i, season_tup in enumerate(self.custom_seas):
num_seasons, len_per_season = season_tup
season_params = Dense(self.feat_dim * num_seasons, name=f"season_params_{i}")(z) # shape: (N, D * S)
season_params = Reshape(target_shape=(self.feat_dim, num_seasons))(season_params) # shape: (N, D, S)
season_indexes_over_time = self._get_season_indexes_over_seq(num_seasons, len_per_season) # shape: (T, )
dim2_idxes = ones_tensor * tf.reshape(season_indexes_over_time, shape=(1, 1, -1)) # shape: (1, 1, T)
season_vals = tf.gather(season_params, dim2_idxes, batch_dims=-1) # shape (N, D, T)
all_seas_vals.append(season_vals)
all_seas_vals = K.stack(all_seas_vals, axis=-1) # shape: (N, D, T, S)
all_seas_vals = tf.reduce_sum(all_seas_vals, axis=-1) # shape (N, D, T)
all_seas_vals = tf.transpose(all_seas_vals, perm=[0, 2, 1]) # shape (N, T, D)
return all_seas_vals
def _get_season_indexes_over_seq(self, num_seasons, len_per_season):
curr_len = 0
season_idx = []
curr_idx = 0
while curr_len < self.seq_len:
reps = len_per_season if curr_len + len_per_season <= self.seq_len else self.seq_len - curr_len
season_idx.extend([curr_idx] * reps)
curr_idx += 1
if curr_idx == num_seasons: curr_idx = 0
curr_len += reps
return season_idx
def generic_seasonal_model(self, z):
freq = Dense(self.feat_dim * self.num_gen_seas, name="g_season_freq", activation='sigmoid')(z)
freq = Reshape(target_shape=(1, self.feat_dim, self.num_gen_seas))(freq) # shape: (N, 1, D, S)
phase = Dense(self.feat_dim * self.num_gen_seas, name="g_season_phase")(z)
phase = Reshape(target_shape=(1, self.feat_dim, self.num_gen_seas))(phase) # shape: (N, 1, D, S)
amplitude = Dense(self.feat_dim * self.num_gen_seas, name="g_season_amplitude")(z)
amplitude = Reshape(target_shape=(1, self.feat_dim, self.num_gen_seas))(amplitude) # shape: (N, 1, D, S)
lin_space = K.arange(0, float(self.seq_len), 1) / self.seq_len # shape of lin_space : 1d tensor of length T
lin_space = tf.reshape(lin_space, shape=(1, self.seq_len, 1, 1)) # shape: 1, T, 1, 1
seas_vals = amplitude * K.sin(2. * np.pi * freq * lin_space + phase) # shape: N, T, D, S
seas_vals = tf.math.reduce_sum(seas_vals, axis=-1) # shape: N, T, D
return seas_vals
def generic_seasonal_model2(self, z):
season_params = Dense(self.feat_dim * self.num_gen_seas, name="g_season_params")(z)
season_params = Reshape(target_shape=(self.feat_dim, self.num_gen_seas))(season_params) # shape: (D, S)
p = self.num_gen_seas
p1, p2 = (p // 2, p // 2) if p % 2 == 0 else (p // 2, p // 2 + 1)
ls = K.arange(0, float(self.seq_len), 1) / self.seq_len # shape of ls : 1d tensor of length T
s1 = K.stack([K.cos(2 * np.pi * i * ls) for i in range(p1)], axis=0)
s2 = K.stack([K.sin(2 * np.pi * i * ls) for i in range(p2)], axis=0)
if p == 1:
s = s2
else:
s = K.concatenate([s1, s2], axis=0)
s = K.cast(s, np.float32)
seas_vals = K.dot(season_params, s, name='g_seasonal_vals')
seas_vals = tf.transpose(seas_vals, perm=[0, 2, 1]) # shape: (N, T, D)
seas_vals = K.cast(seas_vals, np.float32)
print('seas_vals shape', tf.shape(seas_vals))
return seas_vals
def _get_decoder_residual(self, x):
x = Dense(self.encoder_last_dense_dim, name="dec_dense", activation='relu')(x)
x = Reshape(target_shape=(-1, self.hidden_layer_sizes[-1]), name="dec_reshape")(x)
for i, num_filters in enumerate(reversed(self.hidden_layer_sizes[:-1])):
x = Conv1DTranspose(
filters=num_filters,
kernel_size=3,
strides=2,
padding='same',
activation='relu',
name=f'dec_deconv_{i}')(x)
# last de-convolution
x = Conv1DTranspose(
filters=self.feat_dim,
kernel_size=3,
strides=2,
padding='same',
activation='relu',
name=f'dec_deconv__{i + 1}')(x)
x = Flatten(name='dec_flatten')(x)
x = Dense(self.seq_len * self.feat_dim, name="decoder_dense_final")(x)
residuals = Reshape(target_shape=(self.seq_len, self.feat_dim))(x)
return residuals
def save(self, model_dir, file_pref):
super().save_weights(model_dir, file_pref)
dict_params = {
'seq_len': self.seq_len,
'feat_dim': self.feat_dim,
'latent_dim': self.latent_dim,
'reconstruction_wt': self.reconstruction_wt,
'hidden_layer_sizes': self.hidden_layer_sizes,
'trend_poly': self.trend_poly,
'num_gen_seas': self.num_gen_seas,
'custom_seas': self.custom_seas,
'use_scaler': self.use_scaler,
'use_residual_conn': self.use_residual_conn,
}
params_file = os.path.join(model_dir, f'{file_pref}parameters.pkl')
joblib.dump(dict_params, params_file)
@staticmethod
def load(model_dir, file_pref):
params_file = os.path.join(model_dir, f'{file_pref}parameters.pkl')
dict_params = joblib.load(params_file)
vae_model = TimeVAE(**dict_params)
vae_model.load_weights(model_dir, file_pref)
vae_model.compile(optimizer=Adam())
return vae_model