File size: 9,575 Bytes
ae7ea4a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
import tensorflow as tf
def embedding_lookup(lookup_table, x):
return tf.compat.v1.nn.embedding_lookup(lookup_table, x)
def normal_embedding_lookup(x, n_token, d_embed, d_proj, initializer,
proj_initializer, scope='normal_embed', **kwargs):
emb_scale = d_proj ** 0.5
with tf.compat.v1.variable_scope(scope):
lookup_table = tf.compat.v1.get_variable('lookup_table', [n_token, d_embed], initializer=initializer)
y = embedding_lookup(lookup_table, x)
if d_proj != d_embed:
proj_W = tf.compat.v1.get_variable('proj_W', [d_embed, d_proj], initializer=proj_initializer)
y = tf.einsum('ibe,ed->ibd', y, proj_W)
else:
proj_W = None
ret_params = [lookup_table, proj_W]
y *= emb_scale
return y, ret_params
def normal_softmax(hidden, target, n_token, params, scope='normal_softmax', **kwargs):
def _logit(x, W, b, proj):
y = x
if proj is not None:
y = tf.einsum('ibd,ed->ibe', y, proj)
return tf.einsum('ibd,nd->ibn', y, W) + b
params_W, params_projs = params[0], params[1]
with tf.compat.v1.variable_scope(scope):
softmax_b = tf.compat.v1.get_variable('bias', [n_token], initializer=tf.zeros_initializer())
output = _logit(hidden, params_W, softmax_b, params_projs)
nll = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=target, logits=output)
return nll, output
def positional_embedding(pos_seq, inv_freq, bsz=None):
sinusoid_inp = tf.einsum('i,j->ij', pos_seq, inv_freq)
pos_emb = tf.concat([tf.sin(sinusoid_inp), tf.cos(sinusoid_inp)], -1)
if bsz is not None:
return tf.tile(pos_emb[:, None, :], [1, bsz, 1])
else:
return pos_emb[:, None, :]
def positionwise_FF(inp, d_model, d_inner, dropout, kernel_initializer,
scope='ff', is_training=True):
output = inp
with tf.compat.v1.variable_scope(scope):
output = tf.keras.layers.Dense(d_inner, activation=tf.nn.relu,
kernel_initializer=kernel_initializer, name='layer_1')(inp)
output = tf.keras.layers.Dropout(dropout, name='drop_1')(output, training=is_training)
output = tf.keras.layers.Dense(d_model, activation=tf.nn.relu,
kernel_initializer=kernel_initializer, name='layer_2')(output)
output = tf.keras.layers.Dropout(dropout, name='drop_2')(output, training=is_training)
output = tf.keras.layers.LayerNormalization(axis=-1)(output + inp)
return output
def _create_mask(qlen, mlen, same_length=False):
attn_mask = tf.ones([qlen, qlen])
mask_u = tf.linalg.band_part(attn_mask, 0, -1)
mask_dia = tf.linalg.band_part(attn_mask, 0, 0)
attn_mask_pad = tf.zeros([qlen, mlen])
ret = tf.concat([attn_mask_pad, mask_u - mask_dia], 1)
if same_length:
mask_l = tf.matrix_band_part(attn_mask, -1, 0)
ret = tf.concat([ret[:, :qlen] + mask_l - mask_dia, ret[:, qlen:]], 1)
return ret
def _cache_mem(curr_out, prev_mem, mem_len=None):
if mem_len is None or prev_mem is None:
new_mem = curr_out
elif mem_len == 0:
return prev_mem
else:
new_mem = tf.concat([prev_mem, curr_out], 0)[-mem_len:]
return tf.stop_gradient(new_mem)
def rel_shift(x):
x_size = tf.shape(x)
x = tf.pad(x, [[0, 0], [1, 0], [0, 0], [0, 0]])
x = tf.reshape(x, [x_size[1] + 1, x_size[0], x_size[2], x_size[3]])
x = tf.slice(x, [1, 0, 0, 0], [-1, -1, -1, -1])
x = tf.reshape(x, x_size)
return x
def rel_multihead_attn(w, r, r_w_bias, r_r_bias, attn_mask, mems, d_model,
n_head, d_head, dropout, dropatt, is_training,
kernel_initializer, scope='rel_attn'):
scale = 1 / (d_head ** 0.5)
with tf.compat.v1.variable_scope(scope):
qlen = tf.shape(w)[0]
rlen = tf.shape(r)[0]
bsz = tf.shape(w)[1]
cat = tf.concat([mems, w], 0) if mems is not None and mems.shape.ndims > 1 else w
w_heads = tf.keras.layers.Dense(3 * n_head * d_head, use_bias=False,
kernel_initializer=kernel_initializer, name='qkv')(cat)
r_head_k = tf.keras.layers.Dense(n_head * d_head, use_bias=False,
kernel_initializer=kernel_initializer, name='r')(r)
w_head_q, w_head_k, w_head_v = tf.split(w_heads, 3, -1)
w_head_q = w_head_q[-qlen:]
klen = tf.shape(w_head_k)[0]
w_head_q = tf.reshape(w_head_q, [qlen, bsz, n_head, d_head])
w_head_k = tf.reshape(w_head_k, [klen, bsz, n_head, d_head])
w_head_v = tf.reshape(w_head_v, [klen, bsz, n_head, d_head])
r_head_k = tf.reshape(r_head_k, [rlen, n_head, d_head])
rw_head_q = w_head_q + r_w_bias
rr_head_q = w_head_q + r_r_bias
AC = tf.einsum('ibnd,jbnd->ijbn', rw_head_q, w_head_k)
BD = tf.einsum('ibnd,jnd->ijbn', rr_head_q, r_head_k)
BD = rel_shift(BD)
attn_score = (AC + BD) * scale
attn_mask_t = attn_mask[:, :, None, None]
attn_score = attn_score * (1 - attn_mask_t) - 1e30 * attn_mask_t
attn_prob = tf.nn.softmax(attn_score, 1)
attn_prob = tf.keras.layers.Dropout(dropatt)(attn_prob, training=is_training)
attn_vec = tf.einsum('ijbn,jbnd->ibnd', attn_prob, w_head_v)
size_t = tf.shape(attn_vec)
attn_vec = tf.reshape(attn_vec, [size_t[0], size_t[1], n_head * d_head])
attn_out = tf.keras.layers.Dense(d_model, use_bias=False,
kernel_initializer=kernel_initializer, name='o')(attn_vec)
attn_out = tf.keras.layers.Dropout(dropout)(attn_out, training=is_training)
output = tf.keras.layers.LayerNormalization(axis=-1)(attn_out + w)
return output
def transformer(dec_inp, target, mems, n_token, n_layer, d_model, d_embed,
n_head, d_head, d_inner, dropout, dropatt,
initializer, is_training, proj_initializer=None,
mem_len=None, cutoffs=[], div_val=1, tie_projs=[],
same_length=False, clamp_len=-1,
input_perms=None, target_perms=None, head_target=None,
untie_r=False, proj_same_dim=True,
scope='transformer'):
"""
cutoffs: a list of python int. Cutoffs for adaptive softmax.
tie_projs: a list of python bools. Whether to tie the projections.
perms: a list of tensors. Each tensor should of size [len, bsz, bin_size].
Only used in the adaptive setting.
"""
new_mems = []
with tf.compat.v1.variable_scope(scope):
if untie_r:
r_w_bias = tf.compat.v1.get_variable('r_w_bias', [n_layer, n_head, d_head], initializer=initializer)
r_r_bias = tf.compat.v1.get_variable('r_r_bias', [n_layer, n_head, d_head], initializer=initializer)
else:
r_w_bias = tf.compat.v1.get_variable('r_w_bias', [n_head, d_head], initializer=initializer)
r_r_bias = tf.compat.v1.get_variable('r_r_bias', [n_head, d_head], initializer=initializer)
qlen = tf.shape(dec_inp)[0]
mlen = tf.shape(mems[0])[0] if mems is not None else 0
klen = qlen + mlen
if proj_initializer is None:
proj_initializer = initializer
embeddings, shared_params = normal_embedding_lookup(
x=dec_inp,
n_token=n_token,
d_embed=d_embed,
d_proj=d_model,
initializer=initializer,
proj_initializer=proj_initializer)
attn_mask = _create_mask(qlen, mlen, same_length)
pos_seq = tf.range(klen - 1, -1, -1.0)
if clamp_len > 0:
pos_seq = tf.minimum(pos_seq, clamp_len)
inv_freq = 1 / (10000 ** (tf.range(0, d_model, 2.0) / d_model))
pos_emb = positional_embedding(pos_seq, inv_freq)
output = tf.keras.layers.Dropout(rate=dropout)(embeddings, training=is_training)
pos_emb = tf.keras.layers.Dropout(rate=dropout)(pos_emb, training=is_training)
if mems is None:
mems = [None] * n_layer
for i in range(n_layer):
# cache new mems
new_mems.append(_cache_mem(output, mems[i], mem_len))
with tf.compat.v1.variable_scope('layer_{}'.format(i)):
output = rel_multihead_attn(
w=output,
r=pos_emb,
r_w_bias=r_w_bias if not untie_r else r_w_bias[i],
r_r_bias=r_r_bias if not untie_r else r_r_bias[i],
attn_mask=attn_mask,
mems=mems[i],
d_model=d_model,
n_head=n_head,
d_head=d_head,
dropout=dropout,
dropatt=dropatt,
is_training=is_training,
kernel_initializer=initializer)
output = positionwise_FF(
inp=output,
d_model=d_model,
d_inner=d_inner,
dropout=dropout,
kernel_initializer=initializer,
is_training=is_training)
output = tf.keras.layers.Dropout(dropout)(output, training=is_training)
loss, logits = normal_softmax(
hidden=output,
target=target,
n_token=n_token,
params=shared_params)
return loss, logits, new_mems |