Spaces:
Sleeping
Sleeping
""" | |
This application provides an interface for transcription and summarization using models powered by Groq. | |
The interface allows users to record audio or provide an audio file in supported formats. | |
The user will receive a transcription and a generated summary. | |
""" | |
import gradio as gr | |
import groq | |
import io | |
import numpy as np | |
import soundfile as sf | |
def transcribe_audio(audio: tuple, api_key: str) -> str: | |
""" | |
Transcribes the given audio using the Whisper Large v3 Turbo model via the Groq API. | |
The model supports mp3, mp4, mpeg, mpga, m4a, wav, and webm file types. | |
Args: | |
audio (tuple): A tuple where the first element is the sample rate and the second is a numpy array with audio data. | |
api_key (str): API key for Groq. | |
Returns: | |
str: Transcription result or an error message. | |
""" | |
if audio is None: | |
return "" | |
client = groq.Client(api_key=api_key) | |
# Convert the audio data to WAV format in-memory | |
audio_data = audio[1] # Get the numpy array from the tuple | |
buffer = io.BytesIO() | |
# Write numpy array to buffer as WAV format | |
sf.write(buffer, audio_data, audio[0], format='wav') | |
buffer.seek(0) # Reset buffer position | |
# Save audio data | |
bytes_audio = io.BytesIO() | |
np.save(bytes_audio, audio_data) | |
bytes_audio.seek(0) | |
try: | |
# Use Whisper Large v3 Turbo powered by Groq for transcription | |
completion = client.audio.transcriptions.create( | |
model="whisper-large-v3-turbo", | |
file=("audio.wav", buffer), | |
response_format="text" | |
) | |
return completion | |
except Exception as e: | |
return f"Error in transcription: {str(e)}" | |
def generate_response(transcription: str, api_key: str) -> str: | |
""" | |
Generate a response summary from the provided transcription using a Groq model. | |
Args: | |
transcription (str): The text transcription of the audio. | |
api_key (str): The API key to authenticate the request to Groq. | |
Returns: | |
str: Generated response summary or an error message. | |
""" | |
if not transcription: | |
return "No transcription available. Please try recording again." | |
client = groq.Client(api_key=api_key) | |
try: | |
# Use Llama 3.1 70B powered by Groq for text generation | |
completion = client.chat.completions.create( | |
model="llama-3.1-70b-versatile", | |
messages=[ | |
{ | |
"role": "system", | |
"content": ( | |
"You are a helpful assistant powered by Groq's Language " | |
"Processing Units (LPU), designed for fast AI inference. " | |
"Use the following transcription of an audio file and generate 5 " | |
"bullet points that summarize what is covered in the audio. " | |
"Maintain a professional and conversational tone. Do not use " | |
"images or emojis in your answer. Prioritize accuracy and only " | |
"provide information directly supported by the text transcription." | |
) | |
}, | |
{"role": "user", "content": transcription} | |
], | |
) | |
return completion.choices[0].message.content | |
except Exception as e: | |
return f"Error in response generation: {str(e)}" | |
def process_audio(audio: object, api_key: str) -> tuple[str, str]: | |
""" | |
Process the given audio by first transcribing it and then generating a response | |
using the Groq API. | |
Args: | |
audio (object): The audio file to be processed, expected as a numpy array or other format. | |
api_key (str): The API key to authenticate the request to Groq. | |
Returns: | |
tuple: A tuple containing the transcription of the audio and the generated response. | |
""" | |
if not api_key: | |
return "Please enter your Groq API key.", "API key is required." | |
if not audio: | |
return "No audio provided.", "Audio input is required for transcription." | |
# Transcribe audio and generate response | |
transcription = transcribe_audio(audio, api_key) | |
response = generate_response(transcription, api_key) | |
return transcription, response | |
# Custom CSS for the Groq badge and color scheme | |
custom_css = """ | |
.gradio-container { | |
background-color: #f5f5f5; | |
} | |
.gr-button-primary { | |
background-color: #f55036 !important; | |
border-color: #f55036 !important; | |
} | |
.gr-button-secondary { | |
color: #f55036 !important; | |
border-color: #f55036 !important; | |
} | |
#groq-badge { | |
position: fixed; | |
bottom: 20px; | |
right: 20px; | |
z-index: 1000; | |
} | |
""" | |
# Define the Gradio interface | |
with gr.Blocks(theme=gr.themes.Default()) as demo: | |
gr.Markdown("# Groq Scribe") | |
# Input for Groq API key (password protected) | |
api_key_input = gr.Textbox(type="password", label="Enter your Groq API Key") | |
# Row for audio input | |
with gr.Row(): | |
audio_input = gr.Audio(label="Audio", type="numpy") | |
# Row for transcription and summary outputs | |
with gr.Row(): | |
transcription_output = gr.Textbox(label="Transcription") | |
response_output = gr.Textbox(label="Summary") | |
# Submit button | |
submit_button = gr.Button("Process", variant="primary") | |
# Add the Groq badge | |
gr.HTML( | |
""" | |
<div id="groq-badge"> | |
<div style="color: #f55036; font-weight: bold;">POWERED BY GROQ</div> | |
</div> | |
""" | |
) | |
# Connect button click to the process_audio function | |
submit_button.click( | |
process_audio, | |
inputs=[audio_input, api_key_input], | |
outputs=[transcription_output, response_output] | |
) | |
# Markdown instructions for using the app | |
gr.Markdown( | |
""" | |
## How to use this app: | |
1. Enter your [Groq API Key](https://console.groq.com/keys) in the provided field. | |
2. Click on the microphone icon to record audio or provide a file in mp3, mp4, mpeg, mpga, m4a, wav, or webm format. | |
3. Click the "Process" button to transcribe the audio and generate a summary. | |
4. The transcription and summary will appear in the respective text boxes. | |
""" | |
) | |
# Launch the Gradio interface | |
demo.launch() | |