|
import spaces |
|
import gradio as gr |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
tokenizer_3b_mt = AutoTokenizer.from_pretrained("google/madlad400-3b-mt", use_fast=True) |
|
language_codes = [token for token in tokenizer_3b_mt.get_vocab().keys() if token.startswith("<2")] |
|
remove_codes = ['<2>', '<2en_xx_simple>', '<2translate>', '<2back_translated>', '<2zxx_xx_dtynoise>', '<2transliterate>'] |
|
language_codes = [token for token in language_codes if token not in remove_codes] |
|
|
|
model_choices = [ |
|
"google/madlad400-3b-mt", |
|
"google/madlad400-7b-mt", |
|
"google/madlad400-10b-mt", |
|
"google/madlad400-7b-mt-bt" |
|
] |
|
|
|
model_resources = {} |
|
|
|
def load_tokenizer_model(model_name): |
|
""" |
|
Load tokenizer and model for a chosen model name. |
|
""" |
|
if model_name not in model_resources: |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True) |
|
model = AutoModelForSeq2SeqLM.from_pretrained(model_name, torch_dtype=torch.float16) |
|
model.to_bettertransformer() |
|
model.to(device) |
|
model_resources[model_name] = (tokenizer, model) |
|
return model_resources[model_name] |
|
|
|
@spaces.GPU |
|
def translate(text, target_language, model_name): |
|
""" |
|
Translate the input text from English to another language. |
|
""" |
|
|
|
tokenizer, model = load_tokenizer_model(model_name) |
|
|
|
text = target_language + text |
|
input_ids = tokenizer(text, return_tensors="pt").input_ids.to(device) |
|
|
|
outputs = model.generate(input_ids=input_ids, max_new_tokens=128000) |
|
text_translated = tokenizer.batch_decode(outputs, skip_special_tokens=True) |
|
|
|
return text_translated[0] |
|
|
|
title = "MADLAD-400 Translation" |
|
description = """ |
|
Translation from English to over 400 languages based on [research](https://arxiv.org/pdf/2309.04662) by Google DeepMind and Google Research. Initial inference will be slow as models load. |
|
""" |
|
|
|
input_text = gr.Textbox( |
|
label="Text", |
|
placeholder="Enter text here" |
|
) |
|
target_language = gr.Dropdown( |
|
choices=language_codes, |
|
value="<2haw>", |
|
label="Target language" |
|
) |
|
model_choice = gr.Dropdown( |
|
choices=model_choices, |
|
value="google/madlad400-3b-mt", |
|
label="Model" |
|
) |
|
output_text = gr.Textbox(label="Translation") |
|
|
|
demo = gr.Interface( |
|
fn=translate, |
|
inputs=[input_text, target_language, model_choice], |
|
outputs=output_text, |
|
title=title, |
|
description=description |
|
) |
|
|
|
demo.queue() |
|
|
|
demo.launch() |