Spaces:
Sleeping
Sleeping
File size: 10,477 Bytes
60823be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
import json
import dash
from dash import dcc, html, Input, Output
import plotly.express as px
import plotly.graph_objects as go
import pandas as pd
# -----------------------------------------
# Load and Prepare Data
# -----------------------------------------
df = pd.read_csv("./data/megawatt_demand_2024.csv") # Replace with your actual filename
df['timestamp'] = pd.to_datetime(df['UTC Timestamp (Interval Ending)'])
load_columns = [
"Connecticut Actual Load (MW)",
"Maine Actual Load (MW)",
"New Hampshire Actual Load (MW)",
"Northeast Massachusetts Actual Load (MW)",
"Rhode Island Actual Load (MW)",
"Southeast Massachusetts Actual Load (MW)",
"Vermont Actual Load (MW)",
"Western/Central Massachusetts Actual Load (MW)"
]
df_melted = df.melt(
id_vars=['timestamp'],
value_vars=load_columns,
var_name='region',
value_name='load_mw'
)
# Clean region names
df_melted['region'] = df_melted['region'].str.replace(' Actual Load \(MW\)', '', regex=True)
# Compute daily aggregates
df_melted['date'] = df_melted['timestamp'].dt.date
daily_agg = df_melted.groupby(['region', 'date']).agg(
daily_avg=('load_mw', 'mean'),
daily_min=('load_mw', 'min'),
daily_max=('load_mw', 'max')
).reset_index()
print(df_melted.head())
print(daily_agg.head())
# Load GeoJSON
with open('./data/new_england_geojson.json') as f:
geojson = json.load(f)
# Define a color map for the regions
region_colors = {
"Connecticut": "#1f77b4",
"Maine": "#ff7f0e",
"New Hampshire": "#2ca02c",
"Northeast Massachusetts": "#d62728",
"Rhode Island": "#9467bd",
"Southeast Massachusetts": "#8c564b",
"Vermont": "#e377c2",
"Western/Central Massachusetts": "#7f7f7f"
}
# Get unique dates for slider (daily granularity)
unique_dates = sorted(daily_agg['date'].unique())
# Identify month start dates
month_starts = [(i, d) for i, d in enumerate(unique_dates) if d.day == 1]
# Create marks only for the first of each month
date_marks = {i: d.strftime("%Y-%m-%d") for i, d in month_starts}
# Initial state: use the full range of dates
start_idx = 0
end_idx = len(unique_dates) - 1
start_date = unique_dates[start_idx]
end_date = unique_dates[end_idx]
# Create initial figures
latest_time = df_melted['timestamp'].max()
df_latest = df_melted[df_melted['timestamp'] == latest_time]
df_avg = df_melted.groupby('region').mean().reset_index()
print(df_avg.head())
# Create a weekly-peak load by region chart for before clickthrough
df_melted['week'] = df_melted['timestamp'].dt.to_period('W').apply(lambda r: r.start_time)
fig_map = px.choropleth_mapbox(
df_avg,
geojson=geojson,
locations='region',
featureidkey='properties.NAME',
color='load_mw',
color_continuous_scale="Viridis",
mapbox_style="carto-positron",
zoom=5,
center={"lat": 43.5, "lon": -71.5}, # Approx center of New England
opacity=0.7,
hover_name='region'
)
fig_map.update_layout(margin={"r":0,"t":0,"l":0,"b":0}, template='plotly_dark')
# Initial line plot: all regions
fig_line_all = px.line(
df_melted,
x='timestamp',
y='load_mw',
color='region',
title='Load Over Time',
labels={'load_mw':'Load (MW)', 'timestamp':'Time'},
template='plotly_dark',
color_discrete_map=region_colors
)
fig_line_all.update_layout(hovermode="x unified")
# Initial daily aggregates plot (blank or show all)
# Initialize daily load figure
fig_daily = go.Figure(layout={"template":"plotly_dark"})
fig_daily.update_layout(title="Daily Aggregate Load", xaxis_title=None, yaxis_title="Load (MW)")
# -----------------------------------------
# Dash App
# -----------------------------------------
app = dash.Dash(__name__)
# Expose the Flask server instance
server = app.server
app.layout = html.Div(
style={"backgroundColor": "#333", "color": "#fff", "padding": "20px"}, # Dark background
children=[
html.H1("ISO-New England Grid Loading, 2024", style={"textAlign": "center"}),
html.Div([
html.Div([
html.H4('Average Load by ISO-NE Region'),
html.P("Click to filter by region"),
dcc.Graph(id='map', figure=fig_map, style={"height": "60vh"}),
#Markdown descriptor
dcc.Markdown(
"""
**ISO-New England Load by Region:**
This dashboard provides an interactive visualization of electricity
usage across New England states and Massachusetts sub-regions.
Use the date range slider and map to filter and explore trends in grid demand over time.
[Data from ISO-NE](https://www.eia.gov/electricity/wholesalemarkets/isone.php)
""",
style={"margin-top": "20px", "height": "30vh", "overflowY": "auto"}
)
], style={"width": "40%", "display": "inline-block", "vertical-align": "top"}),
html.Div([
dcc.Graph(id='timeseries', figure=fig_line_all, style={"height": "60vh"}),
dcc.Graph(id='daily_timeseries', figure=fig_daily, style={"height": "60vh", "marginTop":"20px"})
], style={"width": "58%", "display": "inline-block", "padding-left":"2%", "vertical-align": "top"})
]),
html.Div([
dcc.RangeSlider(
id='date-range-slider',
min=0,
max=len(unique_dates)-1,
value=[275, 306], #Month of Oct.
marks=date_marks,
step=1,
tooltip=None
),
], style={"margin-bottom":"20px"})
]
)
@app.callback(
[Output('map', 'figure'),
Output('timeseries', 'figure'),
Output('daily_timeseries', 'figure')],
[Input('map', 'clickData'),
Input('date-range-slider', 'value')]
)
def update_charts(clickData, slider_value):
start_idx, end_idx = slider_value
start_date = unique_dates[start_idx]
end_date = unique_dates[end_idx]
df_map_day = df_melted[(df_melted['date'] >= start_date) & (df_melted['date'] <= end_date)].groupby(
'region'
).mean().reset_index()
df_line = df_melted[(df_melted['date'] >= start_date) & (df_melted['date'] <= end_date)]
df_line_daily = daily_agg[(daily_agg['date'] >= start_date) & (daily_agg['date'] <= end_date)]
#Weekly max
weekly_max = df_melted[
(df_melted['date'] >= start_date) & (df_melted['date'] <= end_date)
].groupby(['region', 'week']).agg(weekly_max=('load_mw', 'max')).reset_index()
if clickData is None:
# No region clicked: show all regions
fig_map = px.choropleth_mapbox(
df_map_day,
geojson=geojson,
locations='region',
featureidkey='properties.NAME',
color='load_mw',
color_continuous_scale="Viridis",
mapbox_style="carto-positron",
zoom=5,
center={"lat": 43.5, "lon": -71.5},
opacity=0.7,
hover_name='region'
)
fig_map.update_layout(margin={"r":0,"t":0,"l":0,"b":0}, template='plotly_dark')
fig_line = px.line(
df_line, x='timestamp', y='load_mw', color='region',
title='Load Over Time (Selected Date Range)',
labels={'load_mw':'Load (MW)', 'timestamp':'Time'},
template='plotly_dark',
color_discrete_map=region_colors
)
fig_line.update_layout(hovermode="x unified", xaxis_title=None)
fig_weekly_max = go.Figure(layout={"template":"plotly_dark"})
fig_weekly_max.update_layout(
title="Weekly Max Load by Region",
xaxis_title=None,
yaxis_title="Load (MW)",
hovermode="x unified"
)
for region in weekly_max['region'].unique():
dff = weekly_max[weekly_max['region'] == region]
region_color = region_colors.get(region, "white")
fig_weekly_max.add_trace(
go.Scatter(
x=dff['week'], y=dff['weekly_max'],
mode='lines+markers',
line=dict(color=region_color, width=2),
marker=dict(color=region_color, size=6),
name=f"{region} Weekly Max"
)
)
return fig_map, fig_line, fig_weekly_max
# Region clicked
clicked_region = clickData['points'][0]['location']
dff = df_line[df_line['region'] == clicked_region]
dff_daily = df_line_daily[df_line_daily['region'] == clicked_region]
fig_map = px.choropleth_mapbox(
df_map_day,
geojson=geojson,
locations='region',
featureidkey='properties.NAME',
color='load_mw',
color_continuous_scale="Viridis",
mapbox_style="carto-positron",
zoom=5,
center={"lat": 43.5, "lon": -71.5},
opacity=0.7,
hover_name='region'
)
fig_map.update_layout(margin={"r":0,"t":0,"l":0,"b":0}, template='plotly_dark')
fig_line = px.line(
dff, x='timestamp', y='load_mw', color='region',
title=f'Load Over Time: {clicked_region} ({start_date} to {end_date})',
labels={'load_mw':'Load (MW)', 'timestamp':'Time'},
template='plotly_dark',
color_discrete_map=region_colors
)
fig_line.update_layout(hovermode="x unified")
fig_daily = go.Figure(layout={"template":"plotly_dark"})
region_color = region_colors.get(clicked_region, "white")
if not dff_daily.empty:
fig_daily.add_trace(go.Scatter(
x=dff_daily['date'], y=dff_daily['daily_max'],
mode='lines', line_color=region_color,
name='Daily Max'
))
fig_daily.add_trace(go.Scatter(
x=dff_daily['date'], y=dff_daily['daily_min'],
fill='tonexty', mode='lines', line_color=region_color,
name='Daily Min'
))
fig_daily.add_trace(go.Scatter(
x=dff_daily['date'], y=dff_daily['daily_avg'],
mode='lines+markers', line_color='white', name='Daily Avg'
))
fig_daily.update_layout(
title=f"Daily Load Summary: {clicked_region}",
xaxis_title="Date",
yaxis_title="Load (MW)",
hovermode="x unified"
)
return fig_map, fig_line, fig_daily
if __name__ == '__main__':
app.run_server(host='0.0.0.0', port=8050, debug=False) |