Spaces:
Build error
Build error
File size: 1,403 Bytes
a602c25 dbd9204 a602c25 dbd9204 a602c25 f80d34c c0860ca a602c25 78cc221 a602c25 78cc221 a602c25 78cc221 d1c541a 78cc221 0334332 7608b65 0334332 7608b65 78cc221 e1772ff 13c135d 443f792 c5d4354 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
import transformers
import gradio as gr
import torch
from transformers import GPT2LMHeadModel, GPT2Tokenizer
model_name = 'microsoft/DialoGPT-large'
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
model = GPT2LMHeadModel.from_pretrained(model_name)
def predict(input, history=[]):
# tokenize the new input sentence
new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt')
# append the new user input tokens to the chat history
bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)
# generate a response
history = model.generate(
bot_input_ids,
max_length=1000,
pad_token_id=tokenizer.eos_token_id,
no_repeat_ngram_size=3,
top_p = 0.92,
top_k = 50
).tolist()
# convert the tokens to text, and then split the responses into lines
response = tokenizer.decode(history[0]).split("<|endoftext|>")
response = [(response[i], response[i+1]) for i in range(0, len(response)-1, 2)] # convert to tuples of list
return response, history
gr.Interface(fn=predict,
title="DialoGPT-large",
inputs=["text", "state"],
outputs=["chatbot", "state"],
).launch() |