Spaces:
Build error
Build error
import transformers | |
import gradio as gr | |
import torch | |
from transformers import GPT2LMHeadModel, GPT2Tokenizer | |
model_name = 'microsoft/DialoGPT-large' | |
tokenizer = GPT2Tokenizer.from_pretrained(model_name) | |
model = GPT2LMHeadModel.from_pretrained(model_name) | |
def predict(input, history=[]): | |
# tokenize the new input sentence | |
new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt') | |
# append the new user input tokens to the chat history | |
bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1) | |
# generate a response | |
history = model.generate( | |
bot_input_ids, | |
max_length=1000, | |
pad_token_id=tokenizer.eos_token_id, | |
no_repeat_ngram_size=3, | |
top_p = 0.92, | |
top_k = 50 | |
).tolist() | |
# convert the tokens to text, and then split the responses into lines | |
response = tokenizer.decode(history[0]).split("<|endoftext|>") | |
response = [(response[i], response[i+1]) for i in range(0, len(response)-1, 2)] # convert to tuples of list | |
return response, history | |
gr.Interface(fn=predict, | |
title="DialoGPT-large", | |
inputs=["text", "state"], | |
outputs=["chatbot", "state"], | |
).launch() |