|
import streamlit as st |
|
import tifffile |
|
import pydicom |
|
from scipy.ndimage import zoom |
|
import torch |
|
from core.models.dani_model import dani_model |
|
import numpy as np |
|
from PIL import Image |
|
import base64 |
|
import time |
|
|
|
|
|
|
|
def image_to_base64(image_path): |
|
with open(image_path, "rb") as img_file: |
|
return base64.b64encode(img_file.read()).decode() |
|
|
|
|
|
st.markdown(""" |
|
<style> |
|
@import url('https://fonts.googleapis.com/css2?family=Roboto:wght@400;700&display=swap'); |
|
/* Apply the font to everything */ |
|
html, body, [class*="st"] { |
|
font-family: 'Roboto', sans-serif; |
|
} |
|
</style> |
|
""", unsafe_allow_html=True) |
|
|
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
|
|
|
|
esempi = { |
|
"Frontal β Lateral": {'Frontal': 'FtoL.png', 'Lateral': 'LfromF.png'}, |
|
"Frontal β Report": {'Frontal': '31d9847f-987fcf63-704f7496-d2b21eb8-63cd973e.tiff', 'Report': 'Small bilateral pleural effusions, left greater than right.'}, |
|
"Frontal β Lateral + Report": {'Frontal': '81bca127-0c416084-67f8033c-ecb26476-6d1ecf60.tiff', 'Lateral': 'd52a0c5c-bb7104b0-b1d821a5-959984c3-33c04ccb.tiff', 'Report': 'No acute intrathoracic process. Heart Size is normal. Lungs are clear. No pneumothorax'}, |
|
"Lateral β Frontal": {'Lateral': 'LtoF.png', 'Frontal': 'FfromL.png'}, |
|
"Lateral β Report": {'Lateral': 'd52a0c5c-bb7104b0-b1d821a5-959984c3-33c04ccb.tiff', 'Report': 'no acute cardiopulmonary process. if concern for injury persists, a dedicated rib series with markers would be necessary to ensure no rib fractures.'}, |
|
"Lateral β Frontal + Report": {'Lateral': 'reald52a0c5c-bb7104b0-b1d821a5-959984c3-33c04ccb.tiff', 'Frontal': 'ab37274f-b4c1fc04-e2ff24b4-4a130ba3-cd167968.tiff', 'Report': 'No acute intrathoracic process. If there is strong concern for rib fracture, a dedicated rib series may be performed.'}, |
|
"Report β Frontal": {'Report': 'Left lung opacification which may reflect pneumonia superimposed on metastatic disease.', 'Frontal': '02aa804e-bde0afdd-112c0b34-7bc16630-4e384014.tiff'}, |
|
"Report β Lateral": {'Report': 'Bilateral pleural effusions, cardiomegaly and mild edema suggest fluid overload.', 'Lateral': '489faba7-a9dc5f1d-fd7241d6-9638d855-eaa952b1.tiff'}, |
|
"Report β Frontal + Lateral": {'Report': 'No acute intrathoracic process. The lungs are clean and heart is normal size.', 'Frontal': 'f27ba7cd-44486c2e-29f3e890-f2b9f94e-84110448.tiff', 'Lateral': 'b20c9570-de77944a-b8604ba0-73305a7b-d608a72b.tiff'}, |
|
"Frontal + Lateral β Report": {'Frontal': '95856dd1-5878b5b1-9c104817-760c0122-6187946f.tiff', 'Lateral': '3723d912-71940d69-4fef2dd2-27af5a7b-127ba20c.tiff', 'Report': 'Opacities in the right upper or middle lobe, maybe early pneumonia.'}, |
|
"Frontal + Report β Lateral": {'Frontal': 'e7f21453-7956d79a-44e44614-fae8ff16-d174d1a0.tiff', 'Report': 'No focal consolidation.', 'Lateral': '8037e6b9-06367464-a4ccd63a-5c5c5a81-ce3e7ffc.tiff'}, |
|
"Lateral + Report β Frontal": {'Lateral': '02c66644-b1883a91-54aed0e7-62d25460-398f9865.tiff', 'Report': 'No evidence of acute cardiopulmonary process.', 'Frontal': 'b1f169f1-12177dd5-2fa1c4b1-7b816311-85d769e9.tiff'} |
|
} |
|
|
|
|
|
|
|
st.markdown(""" |
|
<style> |
|
/* Sfondo scuro */ |
|
body { |
|
background-color: #121212; |
|
color: white; |
|
} |
|
/* Personalizzazione del titolo */ |
|
.title { |
|
font-size: 35px !important; |
|
font-weight: bold; |
|
color: #f63366; |
|
} |
|
/* Personalizzazione dei sottotitoli e testi principali */ |
|
.stText, .stButton, .stMarkdown { |
|
font-size: 18px !important; |
|
} |
|
</style> |
|
""", unsafe_allow_html=True) |
|
|
|
|
|
|
|
logo_1_path = "./DEMO/Loghi/Logo_UCBM.png" |
|
logo_2_path = "./DEMO/Loghi/Logo UmU.png" |
|
logo_3_path = "./DEMO/Loghi/Logo COSBI.png" |
|
logo_4_path = "./DEMO/Loghi/logo trasparent.png" |
|
|
|
logo_1_base64 = image_to_base64(logo_1_path) |
|
logo_2_base64 = image_to_base64(logo_2_path) |
|
logo_3_base64 = image_to_base64(logo_3_path) |
|
logo_4_base64 = image_to_base64(logo_4_path) |
|
|
|
|
|
st.markdown(f""" |
|
<style> |
|
.footer {{ |
|
position: fixed; |
|
bottom: 20px; |
|
right: 20px; |
|
z-index: 100; |
|
display: flex; |
|
gap: 10px; /* Spazio tra i loghi */ |
|
}} |
|
.footer img {{ |
|
height: 60px; /* Altezza dei loghi */ |
|
width: auto; /* Mantiene il rapporto di aspetto originale */ |
|
}} |
|
</style> |
|
<div class="footer"> |
|
<img src="data:image/png;base64,{logo_1_base64}" alt="Logo 1"> |
|
<img src="data:image/png;base64,{logo_2_base64}" alt="Logo 2"> |
|
<img src="data:image/png;base64,{logo_3_base64}" alt="Logo 3"> |
|
<img src="data:image/png;base64,{logo_4_base64}" alt="Logo 4"> |
|
</div> |
|
""", unsafe_allow_html=True) |
|
|
|
|
|
if 'step' not in st.session_state: |
|
st.session_state['step'] = 1 |
|
if 'selected_option' not in st.session_state: |
|
st.session_state['selected_option'] = None |
|
if 'frontal_file' not in st.session_state: |
|
st.session_state['frontal_file'] = None |
|
if 'lateral_file' not in st.session_state: |
|
st.session_state['lateral_file'] = None |
|
if 'report' not in st.session_state: |
|
st.session_state['report'] = "" |
|
if 'inputs' not in st.session_state: |
|
st.session_state['inputs'] = None |
|
if 'outputs' not in st.session_state: |
|
st.session_state['outputs'] = None |
|
if 'frontal' not in st.session_state: |
|
st.session_state['frontal'] = None |
|
if 'lateral' not in st.session_state: |
|
st.session_state['lateral'] = None |
|
if 'report' not in st.session_state: |
|
st.session_state['report'] = "" |
|
if 'generate' not in st.session_state: |
|
st.session_state['generate'] = False |
|
|
|
|
|
if 'inference_tester' not in st.session_state: |
|
model_load_paths = ['CoDi_encoders.pth', 'CoDi_text_diffuser.pth', 'CoDi_video_diffuser_8frames.pth'] |
|
st.session_state['inference_tester'] = dani_model(model='thesis_model', |
|
data_dir='/mimer/NOBACKUP/groups/snic2022-5-277/dmolino/checkpoints/', |
|
pth=model_load_paths, load_weights=False) |
|
inference_tester = st.session_state['inference_tester'] |
|
|
|
|
|
if 'weights_loaded' not in st.session_state: |
|
st.session_state['weights_loaded'] = True |
|
|
|
|
|
inference_tester = st.session_state['inference_tester'] |
|
|
|
|
|
st.markdown('<h1 style="text-align: center" class="title">MedCoDi-M</h1>', unsafe_allow_html=True) |
|
|
|
if st.session_state['step'] == 1: |
|
|
|
st.markdown(""" |
|
<div style='text-align: justify; font-size: 18px; line-height: 1.6;'> |
|
This work introduces MedCoDi-M, a novel multi-prompt foundation model for multi-modal medical data generation. |
|
In this demo, you will be able to perform various generation tasks including frontal and lateral chest X-rays and clinical report generation. |
|
MedCoDi-M enables flexible, any-to-any generation across different medical data modalities, utilizing contrastive learning and a modular approach for enhanced performance. |
|
</div> |
|
""", unsafe_allow_html=True) |
|
|
|
|
|
st.markdown('<br>', unsafe_allow_html=True) |
|
|
|
|
|
image_path = "./DEMO/Loghi/model_final.png" |
|
st.image(image_path, caption='', use_container_width=True) |
|
|
|
|
|
st.markdown(""" |
|
<div style='text-align: center; font-size: 16px; font-style: italic; margin-top: 10px;'> |
|
Framework of MedCoDi-M: This demo allows you to generate frontal and lateral chest X-rays, as well as medical reports, through the MedCoDi-M model. |
|
</div> |
|
""", unsafe_allow_html=True) |
|
|
|
|
|
st.markdown('<br>', unsafe_allow_html=True) |
|
|
|
|
|
if st.button("Try it out!"): |
|
st.session_state['step'] = 2 |
|
st.rerun() |
|
|
|
|
|
|
|
if st.session_state['step'] == 2: |
|
|
|
options = [ |
|
"Frontal β Lateral", "Frontal β Report", "Frontal β Lateral + Report", |
|
"Lateral β Frontal", "Lateral β Report", "Lateral β Frontal + Report", |
|
"Report β Frontal", "Report β Lateral", "Report β Frontal + Lateral", |
|
"Frontal + Lateral β Report", "Frontal + Report β Lateral", "Lateral + Report β Frontal" |
|
] |
|
|
|
|
|
st.markdown( |
|
"<h4 style='text-align: justify'><strong>Select the type of generation you want to perform:</strong></h4>", |
|
unsafe_allow_html=True) |
|
|
|
|
|
st.markdown( |
|
"<h4 style='text-align: justify'><strong>Please select an option:</strong></h4>", |
|
unsafe_allow_html=True) |
|
|
|
|
|
st.session_state['selected_option'] = st.selectbox( |
|
"", options, key='selectbox_option', index=0) |
|
|
|
st.markdown('<br>', unsafe_allow_html=True) |
|
|
|
|
|
col1, col2, col3 = st.columns(3) |
|
|
|
|
|
with col1: |
|
if st.button("Inference"): |
|
st.session_state['step'] = 3 |
|
st.rerun() |
|
|
|
|
|
with col2: |
|
if st.button("Try an example"): |
|
st.session_state['step'] = 5 |
|
st.rerun() |
|
|
|
|
|
with col3: |
|
if st.button("Return to the beginning"): |
|
|
|
st.session_state['step'] = 1 |
|
st.session_state['selected_option'] = None |
|
st.session_state['selected_option2'] = None |
|
st.session_state['frontal_file'] = None |
|
st.session_state['lateral_file'] = None |
|
st.session_state['report'] = "" |
|
st.rerun() |
|
|
|
|
|
|
|
if st.session_state['step'] == 3: |
|
st.markdown( |
|
f"<h4 style='text-align: justify'><strong>You selected: {st.session_state['selected_option']}. Now, please upload the required files below:</strong></h4>", |
|
unsafe_allow_html=True) |
|
|
|
|
|
if "Frontal" in st.session_state['selected_option'].split(" β")[0]: |
|
st.markdown("<h5 style='font-size: 18px;'>Load the Frontal X-ray in DICOM format</h5>", unsafe_allow_html=True) |
|
st.session_state['frontal_file'] = st.file_uploader("", type=["dcm"]) |
|
|
|
|
|
if "Lateral" in st.session_state['selected_option'].split(" β")[0]: |
|
st.markdown("<h5 style='font-size: 18px;'>Load the Lateral X-ray in DICOM format</h5>", unsafe_allow_html=True) |
|
st.session_state['lateral_file'] = st.file_uploader("", type=["dcm"]) |
|
|
|
|
|
if "Report" in st.session_state['selected_option'].split(" β")[0]: |
|
st.markdown("<h5 style='font-size: 18px;'>Type the clinical report</h5>", unsafe_allow_html=True) |
|
st.session_state['report'] = st.text_area("", value=st.session_state['report']) |
|
|
|
|
|
st.markdown('<br>', unsafe_allow_html=True) |
|
|
|
|
|
col1, col2 = st.columns(2) |
|
|
|
with col1: |
|
if st.button("Start Generation"): |
|
frontal = None |
|
lateral = None |
|
report = None |
|
|
|
with st.spinner("Preprocessing the data..."): |
|
time.sleep(3) |
|
|
|
if "Frontal" in st.session_state['selected_option'].split(" β")[0] and not st.session_state['frontal_file']: |
|
st.error("Load the Frontal image.") |
|
elif "Lateral" in st.session_state['selected_option'].split(" β")[0] and not st.session_state['lateral_file']: |
|
st.error("Load the Lateral image.") |
|
elif "Report" in st.session_state['selected_option'].split(" β")[0] and not st.session_state['report']: |
|
st.error("Type the clinical report.") |
|
else: |
|
st.write(f"Execution of: {st.session_state['selected_option']}") |
|
|
|
|
|
if st.session_state['frontal_file']: |
|
dicom = pydicom.dcmread(st.session_state['frontal_file']) |
|
image = dicom.pixel_array |
|
if dicom.PhotometricInterpretation == 'MONOCHROME1': |
|
image = (2 ** dicom.BitsStored - 1) - image |
|
if dicom.ImagerPixelSpacing != [0.139, 0.139]: |
|
zoom_factor = [0.139 / dicom.ImagerPixelSpacing[0], 0.139 / dicom.ImagerPixelSpacing[1]] |
|
image = zoom(image, zoom_factor) |
|
image = image / (2 ** dicom.BitsStored - 1) |
|
|
|
if image.shape[0] != image.shape[1]: |
|
diff = abs(image.shape[0] - image.shape[1]) |
|
pad_size = diff // 2 |
|
if image.shape[0] > image.shape[1]: |
|
padded_image = np.pad(image, ((0, 0), (pad_size, pad_size))) |
|
else: |
|
padded_image = np.pad(image, ((pad_size, pad_size), (0, 0))) |
|
|
|
zoom_factor = [256 / padded_image.shape[0], 256 / padded_image.shape[1]] |
|
image_256 = zoom(padded_image, zoom_factor) |
|
frontal = image_256 |
|
if frontal.dtype != np.uint8: |
|
frontal2 = (255 * (frontal - frontal.min()) / (frontal.max() - frontal.min())).astype(np.uint8) |
|
frontal = torch.tensor(frontal, dtype=torch.float32).unsqueeze(0).unsqueeze(0) |
|
frontal2 = Image.fromarray(frontal2) |
|
st.write("Frontal Image loaded successfully!") |
|
|
|
st.image(frontal2, caption="Frontal Image Loaded", use_container_width=True) |
|
if st.session_state['lateral_file']: |
|
dicom = pydicom.dcmread(st.session_state['lateral_file']) |
|
image = dicom.pixel_array |
|
if dicom.PhotometricInterpretation == 'MONOCHROME1': |
|
image = (2 ** dicom.BitsStored - 1) - image |
|
if dicom.ImagerPixelSpacing != [0.139, 0.139]: |
|
zoom_factor = [0.139 / dicom.ImagerPixelSpacing[0], 0.139 / dicom.ImagerPixelSpacing[1]] |
|
image = zoom(image, zoom_factor) |
|
image = image / (2 ** dicom.BitsStored - 1) |
|
|
|
if image.shape[0] != image.shape[1]: |
|
diff = abs(image.shape[0] - image.shape[1]) |
|
pad_size = diff // 2 |
|
if image.shape[0] > image.shape[1]: |
|
padded_image = np.pad(image, ((0, 0), (pad_size, pad_size))) |
|
else: |
|
padded_image = np.pad(image, ((pad_size, pad_size), (0, 0))) |
|
|
|
zoom_factor = [256 / padded_image.shape[0], 256 / padded_image.shape[1]] |
|
image_256 = zoom(padded_image, zoom_factor) |
|
lateral = image_256 |
|
if lateral.dtype != np.uint8: |
|
lateral2 = (255 * (lateral - lateral.min()) / (lateral.max() - lateral.min())).astype(np.uint8) |
|
lateral = torch.tensor(lateral, dtype=torch.float32).unsqueeze(0).unsqueeze(0) |
|
lateral2 = Image.Frontalmarray(lateral2) |
|
st.write("Lateral Image loaded successfully!") |
|
st.image(lateral2, caption="Lateral Image Loaded", use_container_width=True) |
|
if st.session_state['report']: |
|
report = st.session_state['report'] |
|
st.write(f"Loaded Report: {report}") |
|
|
|
inputs = [] |
|
if "Frontal" in st.session_state['selected_option'].split(" β")[0]: |
|
inputs.append('frontal') |
|
if "Lateral" in st.session_state['selected_option'].split(" β")[0]: |
|
inputs.append('lateral') |
|
if "Report" in st.session_state['selected_option'].split(" β")[0]: |
|
inputs.append('text') |
|
|
|
|
|
outputs = [] |
|
if "Frontal" in st.session_state['selected_option'].split(" β")[1]: |
|
outputs.append('frontal') |
|
if "Lateral" in st.session_state['selected_option'].split(" β")[1]: |
|
outputs.append('lateral') |
|
if "Report" in st.session_state['selected_option'].split(" β")[1]: |
|
outputs.append('text') |
|
|
|
|
|
|
|
st.session_state['inputs'] = inputs |
|
st.session_state['outputs'] = outputs |
|
st.session_state['frontal'] = frontal |
|
st.session_state['lateral'] = lateral |
|
st.session_state['report'] = report |
|
st.session_state['generate'] = True |
|
|
|
st.session_state['step'] = 4 |
|
st.rerun() |
|
|
|
with col2: |
|
if st.button("Return to the beginning"): |
|
|
|
st.session_state['step'] = 1 |
|
st.session_state['selected_option'] = None |
|
st.session_state['selected_option2'] = None |
|
st.session_state['frontal_file'] = None |
|
st.session_state['lateral_file'] = None |
|
st.session_state['report'] = "" |
|
st.rerun() |
|
|
|
if st.session_state['step'] == 4: |
|
|
|
if st.session_state['generate'] is True: |
|
conditioning = [] |
|
for inp in st.session_state['inputs']: |
|
if inp == 'frontal': |
|
cim = inference_tester.net.clip_encode_vision(st.session_state['frontal'], encode_type='encode_vision').to(device) |
|
uim = inference_tester.net.clip_encode_vision(torch.zeros_like(st.session_state['frontal']).to(device), |
|
encode_type='encode_vision').to(device) |
|
conditioning.append(torch.cat([uim, cim])) |
|
elif inp == 'lateral': |
|
cim = inference_tester.net.clip_encode_vision(st.session_state['lateral'], encode_type='encode_vision').to(device) |
|
uim = inference_tester.net.clip_encode_vision(torch.zeros_like(st.session_state['lateral']).to(device), |
|
encode_type='encode_vision').to(device) |
|
conditioning.append(torch.cat([uim, cim])) |
|
elif inp == 'text': |
|
ctx = inference_tester.net.clip_encode_text(1 * [st.session_state['report']], encode_type='encode_text').to(device) |
|
utx = inference_tester.net.clip_encode_text(1 * [""], encode_type='encode_text').to(device) |
|
conditioning.append(torch.cat([utx, ctx])) |
|
|
|
|
|
shapes = [] |
|
for out in st.session_state['outputs']: |
|
if out == 'frontal' or out == 'lateral': |
|
shape = [1, 4, 256 // 8, 256 // 8] |
|
shapes.append(shape) |
|
elif out == 'text': |
|
shape = [1, 768] |
|
shapes.append(shape) |
|
|
|
progress_bar = st.progress(0) |
|
|
|
|
|
z, _ = inference_tester.sampler.sample( |
|
steps=50, |
|
shape=shapes, |
|
condition=conditioning, |
|
unconditional_guidance_scale=7.5, |
|
xtype=st.session_state['outputs'], |
|
condition_types=st.session_state['inputs'], |
|
eta=1, |
|
verbose=False, |
|
mix_weight={'lateral': 1, 'text': 1, 'frontal': 1}, |
|
progress_bar=progress_bar) |
|
|
|
|
|
output_cols = st.columns(len(st.session_state['outputs'])) |
|
|
|
|
|
col1, col2 = st.columns(2) |
|
|
|
|
|
for i, out in enumerate(st.session_state['outputs']): |
|
if out == 'frontal': |
|
x = inference_tester.net.autokl_decode(z[i]) |
|
x = torch.clamp((x[0] + 1.0) / 2.0, min=0.0, max=1.0) |
|
im = x[0].cpu().numpy() |
|
with col1: |
|
st.image(im, caption="Generated Frontal Image") |
|
elif out == 'lateral': |
|
x = inference_tester.net.autokl_decode(z[i]) |
|
x = torch.clamp((x[0] + 1.0) / 2.0, min=0.0, max=1.0) |
|
im = x[0].cpu().numpy() |
|
with col2: |
|
st.image(im, caption="Generated Lateral Image") |
|
elif out == 'text': |
|
x = inference_tester.net.optimus_decode(z[i], max_length=100) |
|
x = [a.tolist() for a in x] |
|
rec_text = [inference_tester.net.optimus.tokenizer_decoder.decode(a) for a in x] |
|
rec_text = rec_text[0].replace('<BOS>', '').replace('<EOS>', '') |
|
st.write(f"Generated Report: {rec_text}") |
|
|
|
st.write("Generation completed successfully!") |
|
st.session_state['generate'] = False |
|
|
|
if st.button("Return to the beginning"): |
|
|
|
st.session_state['generate'] = False |
|
st.session_state['step'] = 1 |
|
st.session_state['selected_option'] = None |
|
st.session_state['frontal_file'] = None |
|
st.session_state['lateral_file'] = None |
|
st.session_state['report'] = "" |
|
st.session_state['inputs'] = None |
|
st.session_state['outputs'] = None |
|
st.session_state['frontal'] = None |
|
st.session_state['lateral'] = None |
|
st.session_state['report'] = "" |
|
st.rerun() |
|
|
|
if st.session_state['step'] == 5: |
|
st.markdown( |
|
f"<h4 style='text-align: justify'><strong>You selected: {st.session_state['selected_option']}</strong></h4>", |
|
unsafe_allow_html=True) |
|
|
|
inputs = [] |
|
if "Frontal" in st.session_state['selected_option'].split(" β")[0]: |
|
inputs.append('Frontal') |
|
if "Lateral" in st.session_state['selected_option'].split(" β")[0]: |
|
inputs.append('Lateral') |
|
if "Report" in st.session_state['selected_option'].split(" β")[0]: |
|
inputs.append('Report') |
|
|
|
outputs = [] |
|
if "Frontal" in st.session_state['selected_option'].split(" β")[1]: |
|
outputs.append('Frontal') |
|
if "Lateral" in st.session_state['selected_option'].split(" β")[1]: |
|
outputs.append('Lateral') |
|
if "Report" in st.session_state['selected_option'].split(" β")[1]: |
|
outputs.append('Report') |
|
|
|
esempio = esempi[st.session_state['selected_option']] |
|
|
|
|
|
st.markdown( |
|
"<h3 style='text-align: center'><strong>INPUT:</strong></h3>", |
|
unsafe_allow_html=True) |
|
|
|
|
|
input_cols = st.columns(len(inputs)) |
|
|
|
for idx, inp in enumerate(inputs): |
|
with input_cols[idx]: |
|
if inp == 'Frontal': |
|
path = "./DEMO/ESEMPI/" + esempio['Frontal'] |
|
print(path) |
|
if path.endswith(".tiff"): |
|
im = tifffile.imread(path) |
|
im = np.clip(im, 0, 1) |
|
elif path.endswith(".png"): |
|
im = Image.open(path) |
|
st.image(im, caption="Frontal Image") |
|
elif inp == 'Lateral': |
|
path = "./DEMO/ESEMPI/" + esempio['Lateral'] |
|
if path.endswith(".tiff"): |
|
im = tifffile.imread(path) |
|
im = np.clip(im, 0, 1) |
|
elif path.endswith(".png"): |
|
im = Image.open(path) |
|
st.image(im, caption="Lateral Image") |
|
elif inp == 'Report': |
|
st.markdown( |
|
f"<p style='font-size:20px;'><strong>Report:</strong> {esempio['Report']}</p>", |
|
unsafe_allow_html=True |
|
) |
|
st.markdown( |
|
"<h3 style='text-align: center'><strong>OUTPUT:</strong></h3>", |
|
unsafe_allow_html=True) |
|
|
|
|
|
output_cols = st.columns(len(outputs)) |
|
|
|
for idx, out in enumerate(outputs): |
|
with output_cols[idx]: |
|
if out == 'Frontal': |
|
path = "./DEMO/ESEMPI/" + esempio['Frontal'] |
|
if path.endswith(".tiff"): |
|
im = tifffile.imread(path) |
|
|
|
im = np.clip(im, 0, 1) |
|
elif path.endswith(".png"): |
|
im = Image.open(path) |
|
st.image(im, caption="Frontal Image") |
|
elif out == 'Lateral': |
|
path = "./DEMO/ESEMPI/" + esempio['Lateral'] |
|
if path.endswith(".tiff"): |
|
im = tifffile.imread(path) |
|
|
|
im = np.clip(im, 0, 1) |
|
elif path.endswith(".png"): |
|
im = Image.open(path) |
|
st.image(im, caption="Lateral Image") |
|
elif out == 'Report': |
|
st.markdown( |
|
f"<p style='font-size:20px;'><strong>Report:</strong> {esempio['Report']}</p>", |
|
unsafe_allow_html=True |
|
) |
|
|
|
|
|
if st.button("Return to the beginning"): |
|
|
|
st.session_state['step'] = 1 |
|
st.session_state['selected_option'] = None |
|
st.session_state['selected_option2'] = None |
|
st.session_state['frontal_file'] = None |
|
st.session_state['lateral_file'] = None |
|
st.session_state['report'] = "" |
|
st.rerun() |