File size: 10,095 Bytes
9021b39
dfc6dc5
 
 
 
 
 
693929a
dfc6dc5
693929a
dfc6dc5
 
 
 
7a9ec21
693929a
 
9021b39
dfc6dc5
693929a
dfc6dc5
693929a
dfc6dc5
4969145
693929a
 
 
4969145
693929a
4969145
 
7a9ec21
89acc00
4969145
 
9021b39
693929a
4969145
693929a
 
 
 
 
 
 
 
 
dfc6dc5
9021b39
 
 
 
 
dfc6dc5
 
 
9021b39
dfc6dc5
 
9021b39
 
dfc6dc5
 
 
693929a
dfc6dc5
 
 
 
 
 
 
 
 
 
693929a
 
 
dfc6dc5
 
 
 
9021b39
4969145
dfc6dc5
 
 
4969145
693929a
 
 
4969145
693929a
 
 
 
89acc00
 
 
 
 
693929a
 
 
 
 
 
dfc6dc5
 
 
 
 
 
 
 
 
693929a
 
 
 
 
 
 
 
 
 
 
dfc6dc5
 
 
 
693929a
 
dfc6dc5
 
 
 
 
 
 
 
 
 
 
4969145
 
 
 
 
 
 
 
 
7a9ec21
4969145
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfc6dc5
 
4969145
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfc6dc5
 
 
 
 
 
 
 
 
 
 
 
4969145
dfc6dc5
 
61ec090
89acc00
4969145
 
 
 
 
 
 
89acc00
4969145
 
 
 
 
 
 
 
dfc6dc5
 
 
 
 
 
 
4969145
 
 
 
61ec090
 
 
 
 
 
 
 
4969145
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfc6dc5
 
4969145
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import glob
import gradio as gr
import openai
import os
from dotenv import load_dotenv
import phoenix as px
import llama_index
from llama_index import Prompt, ServiceContext, VectorStoreIndex, SimpleDirectoryReader
from llama_index.chat_engine.types import ChatMode
from llama_index.llms import ChatMessage, MessageRole
from llama_index.vector_stores.qdrant import QdrantVectorStore
from llama_index.text_splitter import SentenceSplitter
from llama_index.extractors import TitleExtractor
from llama_index.ingestion import IngestionPipeline
from chat_template import CHAT_TEXT_QA_PROMPT, TEXT_QA_SYSTEM_PROMPT
from schemas import ChatbotVersion, ServiceProvider
from chatbot import Chatbot, IndexBuilder
from custom_io import MarkdownReader, UnstructuredReader, default_file_metadata_func
from qdrant import client as qdrantClient
from llama_index import set_global_service_context

from service_provider_config import get_service_provider_config

load_dotenv()
# initial service setup
px.launch_app()
llama_index.set_global_handler("arize_phoenix")
# llama_index.set_global_handler("wandb", run_args={"project": "llamaindex"})
openai.api_key = os.getenv("OPENAI_API_KEY")

IS_LOAD_FROM_VECTOR_STORE = True 
VDB_COLLECTION_NAME = "demo-v2"
MODEL_NAME = ChatbotVersion.CHATGPT_4.value


CHUNK_SIZE = 8191
LLM, EMBED_MODEL = get_service_provider_config(
    service_provider=ServiceProvider.OPENAI, model_name=MODEL_NAME)
service_context = ServiceContext.from_defaults(
    chunk_size=CHUNK_SIZE,
    llm=LLM,
    embed_model=EMBED_MODEL,
)
set_global_service_context(service_context)


class AwesumIndexBuilder(IndexBuilder):
    def _load_doucments(self):
        directory = "./awesumcare_data/awesumcare_manual_data"
        # all_files = glob.glob(os.path.join(directory, '*.md'))
        # faq_files = [f for f in all_files if 'FAQ' in os.path.basename(f)]
        # print(faq_files)
        dir_reader = SimpleDirectoryReader(directory, file_extractor={
            ".pdf": UnstructuredReader(),
            ".docx": UnstructuredReader(),
            ".pptx": UnstructuredReader(),
            ".md": MarkdownReader()
        },
            recursive=True,
            # input_files=faq_files,
            exclude=["*.png", "*.pptx", "*.docx", "*.pdf"],
            file_metadata=default_file_metadata_func)

        self.documents = dir_reader.load_data()
        print(f"Loaded {len(self.documents)} docs")

    def _setup_service_context(self):
        super()._setup_service_context()

    def _setup_vector_store(self):
        self.vector_store = QdrantVectorStore(
            client=qdrantClient, collection_name=self.vdb_collection_name)
        super()._setup_vector_store()

    def _setup_index(self):
        super()._setup_index()
        if self.is_load_from_vector_store:
            self.index = VectorStoreIndex.from_vector_store(self.vector_store)
            print("set up index from vector store")
            return
        pipeline = IngestionPipeline(
            transformations=[
                # SentenceSplitter(),
                self.embed_model,
            ],
            vector_store=self.vector_store,
        )
        pipeline.run(documents=self.documents, show_progress=True)
        self.index = VectorStoreIndex.from_vector_store(self.vector_store)


class AwesumCareToolChatbot(Chatbot):
    DENIED_ANSWER_PROMPT = ""
    SYSTEM_PROMPT = ""
    CHAT_EXAMPLES = [
        "什麼是安心三寶?",
        "點樣立平安紙?",
        "甚麼是⾒證?",
        "訂立每份⽂件需要多少錢以及付款⽅法?",
        "通過安⼼三寶製作的⽂件有法律效⼒嗎?",

    ]

    def _setup_observer(self):
        pass

    def _setup_index(self):
        super()._setup_index()

    # def _setup_index(self):
    #     self.index = VectorStoreIndex.from_documents(
    #         self.documents,
    #         service_context=self.service_context
    #     )
    #     super()._setup_index()

    def _setup_query_engine(self):
        super()._setup_query_engine()
        self.query_engine = self.index.as_query_engine(
            text_qa_template=CHAT_TEXT_QA_PROMPT)

    def _setup_tools(self):
        from llama_index.tools.query_engine import QueryEngineTool
        self.tools = QueryEngineTool.from_defaults(
            query_engine=self.query_engine)
        return super()._setup_tools()

    def _setup_chat_engine(self):
        # testing #
        from llama_index.agent import OpenAIAgent
        self.chat_engine = OpenAIAgent.from_tools(
            tools=[self.tools],
            llm=LLM,
            similarity_top_k=1,
            verbose=True
        )
        print("set up agent as chat engine")
        # testing #
        # self.chat_engine = self.index.as_chat_engine(
        #     chat_mode=ChatMode.BEST,
        #     similarity_top_k=5,
        #     text_qa_template=CHAT_TEXT_QA_PROMPT)
        super()._setup_chat_engine()

class AweSumCareContextChatbot(AwesumCareToolChatbot):
    def _setup_query_engine(self):
        pass
    def _setup_tools(self):
        pass
    def _setup_chat_engine(self):
        self.chat_engine = self.index.as_chat_engine(
            chat_mode=ChatMode.CONTEXT,
            similarity_top_k=5,
            system_prompt=TEXT_QA_SYSTEM_PROMPT.content,
            text_qa_template=CHAT_TEXT_QA_PROMPT)

class AweSumCareSimpleChatbot(AwesumCareToolChatbot):
    def _setup_query_engine(self):
        pass
    def _setup_tools(self):
        pass
    def _setup_chat_engine(self):
        self.chat_engine = self.index.as_chat_engine(
            chat_mode=ChatMode.SIMPLE)

model_name = MODEL_NAME
index_builder = AwesumIndexBuilder(vdb_collection_name=VDB_COLLECTION_NAME,
                                   embed_model=EMBED_MODEL,
                                   is_load_from_vector_store=IS_LOAD_FROM_VECTOR_STORE)

# gpt-3.5-turbo-1106, gpt-4-1106-preview
awesum_chatbot = AwesumCareToolChatbot(model_name=model_name, index_builder=index_builder)
awesum_chatbot_context = AweSumCareContextChatbot(model_name=model_name, index_builder=index_builder)
awesum_chatbot_simple = AweSumCareSimpleChatbot(model_name=model_name, index_builder=index_builder)


def service_setup(model_name):
    CHUNK_SIZE = 1024
    LLM, EMBED_MODEL = get_service_provider_config(
        service_provider=ServiceProvider.OPENAI, model_name=model_name)
    service_context = ServiceContext.from_defaults(
        chunk_size=CHUNK_SIZE,
        llm=LLM,
        embed_model=EMBED_MODEL,
    )
    set_global_service_context(service_context)
    return LLM, EMBED_MODEL


def vote(data: gr.LikeData):
    if data.liked:
        gr.Info("You up-voted this response: " + data.value)
    else:
        gr.Info("You down-voted this response: " + data.value)


chatbot = gr.Chatbot()

with gr.Blocks() as demo:

    gr.Markdown("# Awesum Care demo")



    # with gr.Row():
    #     model_selector = gr.Radio(
    #         value=ChatbotVersion.CHATGPT_35.value,
    #         choices=[ChatbotVersion.CHATGPT_35.value, ChatbotVersion.CHATGPT_4.value],
    #         label="Select Chatbot Model (To be implemented)"
    #     )

    with gr.Tab("With relevant context sent to system prompt"):
        context_interface = gr.ChatInterface(
            awesum_chatbot_context.stream_chat,
            examples=awesum_chatbot.CHAT_EXAMPLES,
        )
        chatbot.like(vote, None, None)

    with gr.Tab("With function calling as tool to retrieve"):
        function_call_interface = gr.ChatInterface(
            awesum_chatbot.stream_chat,
            examples=awesum_chatbot.CHAT_EXAMPLES,
        )
        chatbot.like(vote, None, None)


    with gr.Tab("Vanilla ChatGPT without modification"):
        vanilla_interface = gr.ChatInterface(
            awesum_chatbot_simple.stream_chat,
            examples=awesum_chatbot.CHAT_EXAMPLES)

    gr.Markdown("instructions:\n"
                "\nUsing model gpt-4-preview-1106, the most advanced model now in the market.\n"
                "\n(Note that it can be much slower than gpt-3.5, openai's api can be unstable sometimes.)\n"
                "\nThree Tabs:\n"
                "1. Relevant context: retreiving relevant documents and send to ChatGPT.\n"
                "2. Give tools to chatgpt to retrieve context: the most advanced, slowest (>30s to use the tools, before answering).\n"
                "3. Vanilla ChatGPT: self-explanatory.\n"
                )
    # @model_selector.change(inputs=[model_selector, chatbot], outputs=[context_interface, function_call_interface, vanilla_interface])
    # def switch_model(model_name, my_chatbot):
    #     print(model_name)
    #     print(my_chatbot.config())
    #     LLM, EMBED_MODEL = service_setup(model_name)
    #     # global awesum_chatbot, awesum_chatbot_context, awesum_chatbot_simple
    #     # Logic to switch models - create new instances of the chatbots with the selected model
    #     index_builder = AwesumIndexBuilder(vdb_collection_name=VDB_COLLECTION_NAME,
    #                                     embed_model=EMBED_MODEL,
    #                                     is_load_from_vector_store=IS_LOAD_FROM_VECTOR_STORE)
    #     awesum_chatbot = AwesumCareToolChatbot(model_name=model_name, index_builder=index_builder, llm=LLM)
    #     awesum_chatbot_context = AweSumCareContextChatbot(model_name=model_name, index_builder=index_builder)
    #     awesum_chatbot_simple = AweSumCareSimpleChatbot(model_name=model_name, index_builder=index_builder)
    #     # return awesum_chatbot.stream_chat, awesum_chatbot_context.stream_chat, awesum_chatbot_simple.stream_chat

    #     new_context_interface = gr.ChatInterface(
    #         awesum_chatbot_context.stream_chat,
    #     )
    #     new_function_call_interface = gr.ChatInterface(
    #         awesum_chatbot.stream_chat,
    #     )
    #     new_vanilla_interface = gr.ChatInterface(
    #         awesum_chatbot_simple.stream_chat,
    #     )
    #     return new_context_interface, new_function_call_interface, new_vanilla_interface


demo.queue()
demo.launch(share=False)