Spaces:
Running
Running
import os | |
import json | |
import random | |
from torch.utils.data import Dataset | |
from torchvision.datasets.utils import download_url | |
from PIL import Image | |
from data.utils import pre_caption | |
class nlvr_dataset(Dataset): | |
def __init__(self, transform, image_root, ann_root, split): | |
''' | |
image_root (string): Root directory of images | |
ann_root (string): directory to store the annotation file | |
split (string): train, val or test | |
''' | |
urls = {'train':'https://storage.googleapis.com/sfr-vision-language-research/datasets/nlvr_train.json', | |
'val':'https://storage.googleapis.com/sfr-vision-language-research/datasets/nlvr_dev.json', | |
'test':'https://storage.googleapis.com/sfr-vision-language-research/datasets/nlvr_test.json'} | |
filenames = {'train':'nlvr_train.json','val':'nlvr_dev.json','test':'nlvr_test.json'} | |
download_url(urls[split],ann_root) | |
self.annotation = json.load(open(os.path.join(ann_root,filenames[split]),'r')) | |
self.transform = transform | |
self.image_root = image_root | |
def __len__(self): | |
return len(self.annotation) | |
def __getitem__(self, index): | |
ann = self.annotation[index] | |
image0_path = os.path.join(self.image_root,ann['images'][0]) | |
image0 = Image.open(image0_path).convert('RGB') | |
image0 = self.transform(image0) | |
image1_path = os.path.join(self.image_root,ann['images'][1]) | |
image1 = Image.open(image1_path).convert('RGB') | |
image1 = self.transform(image1) | |
sentence = pre_caption(ann['sentence'], 40) | |
if ann['label']=='True': | |
label = 1 | |
else: | |
label = 0 | |
words = sentence.split(' ') | |
if 'left' not in words and 'right' not in words: | |
if random.random()<0.5: | |
return image0, image1, sentence, label | |
else: | |
return image1, image0, sentence, label | |
else: | |
if random.random()<0.5: | |
return image0, image1, sentence, label | |
else: | |
new_words = [] | |
for word in words: | |
if word=='left': | |
new_words.append('right') | |
elif word=='right': | |
new_words.append('left') | |
else: | |
new_words.append(word) | |
sentence = ' '.join(new_words) | |
return image1, image0, sentence, label | |