Spaces:
Runtime error
Runtime error
File size: 23,190 Bytes
5ddef29 c95bc41 5ddef29 c95bc41 5ddef29 e042973 bab1e75 90c9c61 5005e7e 928dc00 f867354 d49e1e5 d7c31ef fc63532 5ddef29 f467a89 f1d8f65 7e726ee f1d8f65 dda9682 314c360 f1d8f65 314c360 7e726ee f5c61bc 314c360 7e726ee dda9682 f5c61bc 314c360 dda9682 90c9c61 7e726ee f467a89 b33f45e 5ddef29 f467a89 5ddef29 4fff7a9 5ddef29 f467a89 5ddef29 4fff7a9 5ddef29 f467a89 5ddef29 4fff7a9 5ddef29 f467a89 5ddef29 2f14be5 5ddef29 f429ce6 5ddef29 8637ff9 f467a89 8637ff9 5ddef29 b33f45e b62f01b b33f45e b62f01b f467a89 b62f01b f467a89 b62f01b f467a89 7494c56 b33f45e f467a89 b33f45e b62f01b f467a89 b62f01b 5ddef29 b62f01b 5ddef29 b33f45e ef3889f 341f459 efe2f1f 5ddef29 3bebd7a 79e5823 5ddef29 efe2f1f 5ddef29 efe2f1f 23de566 5ddef29 b33f45e ef3889f 341f459 efe2f1f 341f459 efe2f1f 8637ff9 efe2f1f 8637ff9 efe2f1f 314c360 23de566 8637ff9 d49e1e5 5ddef29 8637ff9 98511b0 f467a89 98511b0 b62f01b dc887cd f467a89 dc887cd b62f01b f467a89 b62f01b f467a89 b62f01b 2e7bb9d f467a89 b62f01b f467a89 b62f01b f467a89 b62f01b 333a149 b62f01b 23de566 dc887cd 23de566 f71d017 b33f45e 23de566 f467a89 8637ff9 dc887cd f467a89 dc887cd 8637ff9 f467a89 8637ff9 dad3e30 8637ff9 f467a89 8637ff9 0370bc2 b33f45e 8637ff9 f467a89 8637ff9 f467a89 8637ff9 f867354 b33f45e 8637ff9 23de566 dc887cd 23de566 f467a89 b33f45e 23de566 f467a89 b62f01b f467a89 b62f01b f467a89 b4f34f5 b62f01b f467a89 b62f01b f467a89 b62f01b f467a89 b62f01b f467a89 b62f01b 23de566 fc63532 fedcafb b62f01b dc887cd f467a89 b62f01b d31b23b b33f45e 23de566 f467a89 dda9682 f467a89 dc887cd a61266c dc887cd f467a89 dda9682 f467a89 f660159 f467a89 c95bc41 fc63532 c95bc41 c6c49bf c95bc41 fc63532 f867354 8596f84 f867354 c95bc41 7494c56 8596f84 7494c56 4a4c05f 7172358 c95bc41 f467a89 b33f45e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 |
import gradio as gr
import requests
import time
import random
import json
import base64
import os
from transformers import pipeline, set_seed
from io import BytesIO
import io
import html
import PIL
from PIL import Image
import re
import cv2
import numpy as np
def upscale_image(input_image, radio_input):
upscale_factor = radio_input
output_image = cv2.resize(input_image, None, fx = upscale_factor, fy = upscale_factor, interpolation = cv2.INTER_CUBIC)
return [output_image], output_image
def send_prompt(prompt):
return prompt
def query(payload, model):
HF_TOKEN = os.getenv("HF_TOKEN")
headers = {"Authorization": f"Bearer {HF_TOKEN}"}
url = "https://api-inference.huggingface.co/models/"
API_URL = f"{url}{model}"
response = requests.post(API_URL, headers=headers, json=payload)
return response.content
def hf_inference(prompt, negative, model, steps, sampler, guidance, width, height, seed, progress=gr.Progress()):
try:
progress(0, desc="Starting")
images=[]
time.sleep(2.5)
progress(0.05)
progress(0.25, desc="Generating")
image_bytes = query(payload={
"inputs": f"{prompt}",
"parameters": {
"negative_prompt": f"{negative}",
"num_inference_steps": steps,
"guidance_scale": guidance,
"width": width, "height": height,
"seed": seed,
},
}, model=model)
progress(0.75, desc="Opening image")
time.sleep(1)
image = Image.open(io.BytesIO(image_bytes))
images.append(image)
progress(0.99, desc="Sending image")
time.sleep(0.5)
return images
except PIL.UnidentifiedImageError:
gr.Warning("This model is not loaded now. Try others models.")
class Prodia:
def __init__(self, api_key, base=None):
self.base = base or "https://api.prodia.com/v1"
self.headers = {
"X-Prodia-Key": api_key
}
def generate(self, params):
response = self._post(f"{self.base}/sd/generate", params)
return response.json()
def transform(self, params):
response = self._post(f"{self.base}/sd/transform", params)
return response.json()
def controlnet(self, params):
response = self._post(f"{self.base}/sd/controlnet", params)
return response.json()
def get_job(self, job_id):
response = self._get(f"{self.base}/job/{job_id}")
return response.json()
def wait(self, job):
job_result = job
while job_result['status'] not in ['succeeded', 'failed']:
time.sleep(0.25)
job_result = self.get_job(job['job'])
return job_result
def list_models(self):
response = self._get(f"{self.base}/sd/models")
return response.json()
def list_samplers(self):
response = self._get(f"{self.base}/sd/samplers")
return response.json()
def _post(self, url, params):
headers = {
**self.headers,
"Content-Type": "application/json"
}
response = requests.post(url, headers=headers, data=json.dumps(params))
if response.status_code != 200:
raise Exception(f"Bad Prodia Response: {response.status_code}")
return response
def _get(self, url):
response = requests.get(url, headers=self.headers)
if response.status_code != 200:
raise Exception(f"Bad Prodia Response: {response.status_code}")
return response
def image_to_base64(image):
# Convert the image to bytes
buffered = BytesIO()
image.save(buffered, format="PNG") # You can change format to PNG if needed
# Encode the bytes to base64
img_str = base64.b64encode(buffered.getvalue())
return img_str.decode('utf-8') # Convert bytes to string
def remove_id_and_ext(text):
text = re.sub(r'\[.*\]$', '', text)
extension = text[-12:].strip()
if extension == "safetensors":
text = text[:-13]
elif extension == "ckpt":
text = text[:-4]
return text
def get_data(text):
results = {}
patterns = {
'prompt': r'(.*)',
'negative_prompt': r'Negative prompt: (.*)',
'steps': r'Steps: (\d+),',
'seed': r'Seed: (\d+),',
'sampler': r'Sampler:\s*([^\s,]+(?:\s+[^\s,]+)*)',
'model': r'Model:\s*([^\s,]+)',
'cfg_scale': r'CFG scale:\s*([\d\.]+)',
'size': r'Size:\s*([0-9]+x[0-9]+)'
}
for key in ['prompt', 'negative_prompt', 'steps', 'seed', 'sampler', 'model', 'cfg_scale', 'size']:
match = re.search(patterns[key], text)
if match:
results[key] = match.group(1)
else:
results[key] = None
if results['size'] is not None:
w, h = results['size'].split("x")
results['w'] = w
results['h'] = h
else:
results['w'] = None
results['h'] = None
return results
def send_to_img2img_def(images):
return images
def send_to_txt2img(image):
result = {tabs: gr.update(selected="t2i")}
try:
text = image.info['parameters']
data = get_data(text)
result[prompt] = gr.update(value=data['prompt'])
result[negative_prompt] = gr.update(value=data['negative_prompt']) if data[
'negative_prompt'] is not None else gr.update()
result[steps] = gr.update(value=int(data['steps'])) if data['steps'] is not None else gr.update()
result[seed] = gr.update(value=int(data['seed'])) if data['seed'] is not None else gr.update()
result[cfg_scale] = gr.update(value=float(data['cfg_scale'])) if data['cfg_scale'] is not None else gr.update()
result[width] = gr.update(value=int(data['w'])) if data['w'] is not None else gr.update()
result[height] = gr.update(value=int(data['h'])) if data['h'] is not None else gr.update()
result[sampler] = gr.update(value=data['sampler']) if data['sampler'] is not None else gr.update()
if model in model_names:
result[model] = gr.update(value=model_names[model])
else:
result[model] = gr.update()
return result
except Exception as e:
print(e)
return result
prodia_client = Prodia(api_key=os.getenv("PRODIA_API_KEY"))
model_list = prodia_client.list_models()
model_names = {}
for model_name in model_list:
name_without_ext = remove_id_and_ext(model_name)
model_names[name_without_ext] = model_name
def txt2img(prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed, progress=gr.Progress()):
progress(0, desc="Starting")
time.sleep(2.5)
progress(0.25, desc="Generating")
result = prodia_client.generate({
"prompt": prompt,
"negative_prompt": negative_prompt,
"model": model,
"steps": steps,
"sampler": sampler,
"cfg_scale": cfg_scale,
"width": width,
"height": height,
"seed": seed
})
progress(0.75, desc="Opening image")
job = prodia_client.wait(result)
progress(0.99, desc="Sending image")
return [job["imageUrl"]], job["imageUrl"]
def img2img(input_image, denoising, prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed, progress=gr.Progress()):
progress(0, desc="Starting")
time.sleep(1.5)
progress(0.10, desc="Uploading input image")
time.sleep(1.5)
progress(0.25, desc="Generating")
result = prodia_client.transform({
"imageData": image_to_base64(input_image),
"denoising_strength": denoising,
"prompt": prompt,
"negative_prompt": negative_prompt,
"model": model,
"steps": steps,
"sampler": sampler,
"cfg_scale": cfg_scale,
"width": width,
"height": height,
"seed": seed
})
progress(0.75, desc="Opening image")
job = prodia_client.wait(result)
progress(0.99, desc="Sending image")
time.sleep(0.5)
return [job["imageUrl"]], job["imageUrl"]
css = """
#generate {
height: 100%;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Row():
with gr.Column(scale=6):
model = gr.Dropdown(interactive=True, value="absolutereality_v181.safetensors [3d9d4d2b]", show_label=True,
label="Stable Diffusion Checkpoint", choices=prodia_client.list_models())
with gr.Tabs() as tabs:
with gr.Tab("txt2img", id='t2i'):
with gr.Row():
with gr.Column(scale=6, min_width=600):
prompt = gr.Textbox(placeholder="Prompt", show_label=False, lines=3)
negative_prompt = gr.Textbox(placeholder="Negative Prompt", show_label=False, lines=3,
value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation")
with gr.Column():
text_button = gr.Button("Generate", variant='primary', elem_id="generate")
with gr.Row():
with gr.Column(scale=3):
with gr.Tab("Generation"):
with gr.Row():
with gr.Column(scale=1):
sampler = gr.Dropdown(value="DPM++ 2M Karras", show_label=True, label="Sampling Method",
choices=prodia_client.list_samplers())
with gr.Column(scale=1):
steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=25, value=20, step=1)
with gr.Row():
with gr.Column(scale=1):
width = gr.Slider(label="Width", maximum=1024, value=512, step=8)
height = gr.Slider(label="Height", maximum=1024, value=512, step=8)
with gr.Column(scale=1):
batch_size = gr.Slider(label="Batch Size", maximum=1, value=1)
batch_count = gr.Slider(label="Batch Count", maximum=1, value=1)
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, value=8, step=1)
seed = gr.Number(label="Seed", value=-1)
with gr.Column(scale=2):
image_output = gr.Gallery(show_label=False, rows=2)
send_to_img2img = gr.Button(value="Send OUTPUT IMAGE to img2img")
send_to_png = gr.Button(value="Send OUTPUT IMAGE to PNG Info")
past_url = gr.Textbox(visible=False, interactive=False)
text_button.click(txt2img, inputs=[prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height,
seed], outputs=[image_output, past_url], concurrency_limit=64)
with gr.Tab("img2img", id='i2i'):
with gr.Row():
with gr.Column(scale=6, min_width=600):
i2i_prompt = gr.Textbox(placeholder="Prompt", show_label=False, lines=3)
i2i_negative_prompt = gr.Textbox(placeholder="Negative Prompt", show_label=False, lines=3,
value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation")
with gr.Column():
i2i_text_button = gr.Button("Generate", variant='primary', elem_id="generate")
with gr.Row():
with gr.Column(scale=3):
with gr.Tab("Generation"):
i2i_image_input = gr.Image(type="pil", interactive=True)
with gr.Row():
with gr.Column(scale=1):
i2i_sampler = gr.Dropdown(value="Euler a", show_label=True, label="Sampling Method",
choices=prodia_client.list_samplers())
with gr.Column(scale=1):
i2i_steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=25, value=20, step=1)
with gr.Row():
with gr.Column(scale=1):
i2i_width = gr.Slider(label="Width", maximum=1024, value=512, step=8)
i2i_height = gr.Slider(label="Height", maximum=1024, value=512, step=8)
with gr.Column(scale=1):
i2i_batch_size = gr.Slider(label="Batch Size", maximum=1, value=1)
i2i_batch_count = gr.Slider(label="Batch Count", maximum=1, value=1)
i2i_cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, value=7, step=1)
i2i_denoising = gr.Slider(label="Denoising Strength", minimum=0, maximum=1, value=0.7, step=0.1)
i2i_seed = gr.Number(label="Seed", value=-1)
with gr.Column(scale=2):
i2i_image_output = gr.Gallery(show_label=False, rows=2)
send_to_png_i2i = gr.Button(value="Send INPUT IMAGE to PNG Info")
i2i_past_url = gr.Textbox(visible=False, interactive=False)
i2i_text_button.click(img2img, inputs=[i2i_image_input, i2i_denoising, i2i_prompt, i2i_negative_prompt,
model, i2i_steps, i2i_sampler, i2i_cfg_scale, i2i_width, i2i_height,
i2i_seed], outputs=[i2i_image_output, i2i_past_url], concurrency_limit=64)
send_to_img2img.click(send_to_img2img_def, inputs=past_url, outputs=i2i_image_input)
with gr.Tab("PNG Info"):
def plaintext_to_html(text, classname=None):
content = "<br>\n".join(html.escape(x) for x in text.split('\n'))
return f"<p class='{classname}'>{content}</p>" if classname else f"<p>{content}</p>"
def get_exif_data(path):
image = Image.open(path)
items = image.info
info = ''
for key, text in items.items():
info += f"""
<div>
<p><b>{plaintext_to_html(str(key))}</b></p>
<p>{plaintext_to_html(str(text))}</p>
</div>
""".strip() + "\n"
if len(info) == 0:
message = "Nothing found in the image."
info = f"<div><p>{message}<p></div>"
return info
with gr.Row():
with gr.Column():
image_input = gr.Image(type="filepath", interactive=True)
png_button = gr.Button("Get Info", variant="primary")
with gr.Row():
with gr.Column():
exif_output = gr.HTML(label="EXIF Data")
send_to_txt2img_btn = gr.Button("Send PARAMETRS to txt2img")
send_to_img2img_png = gr.Button("Send IMAGE to img2img")
image_input.upload(get_exif_data, inputs=[image_input], outputs=exif_output)
png_button.click(get_exif_data, inputs=[image_input], outputs=exif_output)
send_to_txt2img_btn.click(send_to_txt2img, inputs=[image_input], outputs=[tabs, prompt, negative_prompt,
steps, seed, model, sampler,
width, height, cfg_scale],
concurrency_limit=64)
send_to_png.click(send_to_img2img_def, inputs=past_url, outputs=image_input)
send_to_img2img_png.click(send_to_img2img_def, inputs=past_url, outputs=i2i_image_input)
send_to_png_i2i.click(send_to_img2img_def, inputs=i2i_past_url, outputs=image_input)
with gr.Tab("HuggingFace Inference"):
with gr.Row():
gr.Markdown("Add your model from HF.co, enter model ID.")
hf_model = gr.Dropdown(label="HuggingFace checkpoint", choices=["runwayml/stable-diffusion-v1-5", "stabilityai/stable-diffusion-2-1", "dataautogpt3/OpenDalleV1.1", "CompVis/stable-diffusion-v1-4", "playgroundai/playground-v2-1024px-aesthetic", "prompthero/openjourney", "openskyml/dreamdrop-v1", "SG161222/Realistic_Vision_V1.4", "digiplay/AbsoluteReality_v1.8.1", "openskyml/dalle-3-xl", "Lykon/dreamshaper-7", "Pclanglais/Mickey-1928"], value="runwayml/stable-diffusion-v1-5", allow_custom_value=True, interactive=True)
with gr.Row():
with gr.Column(scale=6, min_width=600):
hf_prompt = gr.Textbox(placeholder="Prompt", show_label=False, lines=3)
hf_negative_prompt = gr.Textbox(placeholder="Negative Prompt", show_label=False, lines=3,
value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation")
with gr.Column():
hf_text_button = gr.Button("Generate with HF", variant='primary', elem_id="generate")
with gr.Row():
with gr.Column(scale=3):
with gr.Tab("Generation"):
with gr.Row():
with gr.Column(scale=1):
hf_steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=25, value=20, step=1)
with gr.Row():
with gr.Column(scale=1):
hf_width = gr.Slider(label="Width", maximum=1024, value=512, step=8)
hf_height = gr.Slider(label="Height", maximum=1024, value=512, step=8)
with gr.Column(scale=1):
hf_batch_size = gr.Slider(label="Batch Size", maximum=1, value=1)
hf_batch_count = gr.Slider(label="Batch Count", maximum=1, value=1)
hf_cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, value=8, step=1)
hf_seed = gr.Number(label="Seed", value=-1)
with gr.Column(scale=2):
hf_image_output = gr.Gallery(show_label=False, preview=True, columns=4, allow_preview=True)
#hf_send_to_img2img = gr.Button(value="Send to img2img")
hf_text_button.click(hf_inference, inputs=[hf_prompt, hf_negative_prompt, hf_model, hf_steps, sampler, hf_cfg_scale, hf_width, hf_height,
hf_seed], outputs=hf_image_output, concurrency_limit=64)
with gr.Tab("Prompt Generator"):
gpt2_pipe = pipeline('text-generation', model='Gustavosta/MagicPrompt-Stable-Diffusion', tokenizer='gpt2')
with open("ideas.txt", "r") as f:
line = f.readlines()
def prompt_gen(starting_text):
seed = random.randint(100, 1000000)
set_seed(seed)
if starting_text == "":
starting_text: str = line[random.randrange(0, len(line))].replace("\n", "").lower().capitalize()
starting_text: str = re.sub(r"[,:\-–.!;?_]", '', starting_text)
response = gpt2_pipe(starting_text, max_length=(len(starting_text) + random.randint(60, 90)), num_return_sequences=1)
response_list = []
for x in response:
resp = x['generated_text'].strip()
if resp != starting_text and len(resp) > (len(starting_text) + 4) and resp.endswith((":", "-", "—")) is False:
response_list.append(resp+'\n')
response_end = "\n".join(response_list)
response_end = re.sub('[^ ]+\.[^ ]+','', response_end)
response_end = response_end.replace("<", "").replace(">", "")
if response_end != "":
return response_end
idea = gr.Textbox(show_label=False, placeholder="Enter your idea", max_lines=3, lines=1, interactive=True)
prompt_button = gr.Button(value="Generate Prompt", variant="primary")
prompt_full = gr.Textbox(label="Full Prompt", max_lines=8, lines=3, interactive=False, show_copy_button=True)
send_to_txt2img_prompt = gr.Button(value="Send FULL PROMPT to txt2img")
send_to_img2img_prompt = gr.Button(value="Send FULL PROMPT to img2img")
send_to_txt2img_prompt.click(send_prompt, inputs=prompt_full, outputs=prompt)
send_to_img2img_prompt.click(send_prompt, inputs=prompt_full, outputs=i2i_prompt)
idea.submit(prompt_gen, inputs=idea, outputs=prompt_full)
prompt_button.click(prompt_gen, inputs=idea, outputs=prompt_full)
with gr.Tab("Upscaler"):
gr.HTML(value="""
<h1><center>Upscaler</center></h1>
""")
with gr.Row():
us_input = gr.Image(show_label=False, interactive=True)
us_radio = gr.Radio(label="Upscale Levels", choices=[2, 4, 6, 8, 10], value=2)
us_button = gr.Button(value="Generate with Upscaler", variant="primary")
us_output = gr.Gallery(show_label=False, rows=3, preview=True)
send_to_img2img_us = gr.Button(value="Send UPSCALED IMAGE to img2img")
us_past = gr.Image(interactive=False, visible=False)
us_button.click(upscale_image, inputs=[us_input, us_radio], outputs=[us_output, us_past])
send_to_img2img_us.click(send_to_img2img_def, inputs=us_past, outputs=i2i_image_input)
with gr.Tab("BLIP"):
with gr.Tab("Base"):=False
gr.load("models/Salesforce/blip-image-captioning-base", title="BLIP-base")
with gr.Tab("Large"):
gr.load("models/Salesforce/blip-image-captioning-large", title="BLIP-large")
with gr.Tab("Classification"):
gr.load("models/google/vit-base-patch16-224", title="ViT Classification")
#with gr.Tab("Segmentation"):
# gr.load("models/mattmdjaga/segformer_b2_clothes", title="SegFormer Segmentation")
with gr.Tab("Visual Question Answering"):
gr.load("models/dandelin/vilt-b32-finetuned-vqa", title="ViLT VQA")
demo.queue(max_size=80, api_open=False).launch(max_threads=256, show_api=False)
|