Spaces:
Runtime error
Runtime error
import gradio as gr | |
from pathlib import Path | |
from reactagent.environment import Environment | |
from reactagent.agents.agent_research import ResearchAgent | |
from reactagent.runner import create_parser | |
from reactagent import llm | |
from reactagent.users.user import User | |
import json | |
# Global variables to store session state | |
env = None | |
agent = None | |
state_extract = False | |
state_generate = False | |
state_agent = False | |
state_complete = False | |
index_ex = "1" | |
example_text = [ | |
"Research Paper 1: Dataset and Baseline for Automatic Student Feedback Analysis", | |
"Research Paper 2: An Empirical Study on the Impact of Code Review on Software Quality" | |
] | |
# Load example JSON file | |
def load_example_data(): | |
with open("example/example_data.json", "r") as json_file: | |
return json.load(json_file) | |
example_data = load_example_data() | |
with open("example/ex1_init.py", "r") as f: | |
predefined_code = f.read() | |
with open("example/ex1_final.py", "r") as f: | |
final_code = f.read() | |
# Function to handle the selection of an example and populate the respective fields | |
def load_example(example_id): | |
global index_ex | |
index_ex = str(example_id) | |
example = example_data[index_ex] | |
paper_text = 'Title:\t' + example['title'] + '\nAbstract:\t' + example['abstract'] | |
return paper_text | |
example_text = [load_example(1), load_example(2)] | |
# Function to handle example clicks | |
def load_example_and_set_index(paper_text_input): | |
global index_ex | |
index_ex = str(example_text.index(paper_text_input) + 1) | |
paper_text = load_example(index_ex) | |
return paper_text, "", "", "", "", "", "" | |
########## Phase 1 ############## | |
def extract_research_elements(paper_text): | |
global state_extract | |
state_extract = True | |
global index_ex | |
example = example_data[index_ex] | |
tasks = example['research_tasks'] | |
gaps = example['research_gaps'] | |
keywords = example['keywords'] | |
recent_works = "\n".join(example['recent_works']) | |
return tasks, gaps, keywords, recent_works | |
# Step 2: Generate Research Hypothesis and Experiment Plan | |
def generate_and_store(tasks, gaps, keywords, recent_works): | |
if (not state_extract): | |
return "", "", "", "" | |
global state_generate | |
state_generate = True | |
global index_ex | |
hypothesis = example_data[index_ex]['hypothesis'] | |
experiment_plan = example_data[index_ex]['experiment_plan'] | |
return hypothesis, experiment_plan, hypothesis, experiment_plan | |
########## Phase 2 & 3 ############## | |
def start_experiment_agent(hypothesis, plan): | |
if (not state_extract or not state_generate): | |
return "", "" | |
global state_agent | |
state_agent = True | |
predefined_message = f"Implement the following hypothesis and experiment plan:\n\nHypothesis:\n{hypothesis}\n\nExperiment Plan:\n{plan}" | |
return predefined_code, predefined_action_log | |
def submit_feedback(user_feedback, history, previous_response): | |
if (not state_extract or not state_generate or not state_agent): | |
return "", "", "" | |
global step_index | |
global state_complete | |
step_index += 1 | |
msg = history | |
if step_index < len(process_steps): | |
msg += previous_response + "\nUser feedback:" + user_feedback + "\n\n" | |
response_info = process_steps[step_index] | |
response = info_to_message(response_info) # Convert dictionary to formatted string | |
response += "Please provide feedback based on the history, response entries, and observation, and questions: " | |
step_index += 1 | |
msg += response | |
else: | |
state_complete = True | |
response = "Agent Finished." | |
return msg, response, predefined_code if state_complete else final_code | |
def load_phase_2_inputs(hypothesis, plan): | |
return hypothesis, plan, "# Code implementation will be displayed here after Start ExperimentAgent." | |
predefined_action_log = """ | |
[Reasoning]: To understand the initial structure and functionality of train.py for effective improvements. | |
[Action]: Inspect Script (train.py) | |
Input: {"script_name": "train.py", "start_line_number": "1", "end_line_number": "74"} | |
Objective: Understand the training script, including data processing, [...] | |
[Observation]: The train.py script imports [...]. Sets random seeds [...]. Defines [...] Placeholder functions [...] exist without implementation. [...] | |
[Feedback]: The script structure is clear, but key functions (train_model, predict) need proper implementation for proposed model training and prediction. | |
""" | |
predefined_observation = """ | |
Epoch [1/10], | |
Train MSE: 0.543, | |
Test MSE: 0.688 | |
Epoch [2/10], | |
Train MSE: 0.242, | |
Test MSE: 0.493 | |
""" | |
# Initialize the global step_index and history | |
process_steps = [ | |
{ | |
"Action": "Inspect Script Lines (train.py)", | |
"Observation": ( | |
"The train.py script imports necessary libraries (e.g., pandas, sklearn, torch). " | |
"Sets random seeds for reproducibility. Defines compute_metrics_for_regression function " | |
"to calculate RMSE for different dimensions. Placeholder functions train_model and " | |
"predict exist without implementations." | |
), | |
}, | |
{ | |
"Action": "Execute Script (train.py)", | |
"Observation": ( | |
"The script executed successfully. Generated embeddings using the BERT model. Completed " | |
"the training process without errors. Metrics calculation placeholders indicated areas needing implementation." | |
), | |
}, | |
{ | |
"Action": "Edit Script (train.py)", | |
"Observation": ( | |
"Edited train.py to separate data loading, model definition, training loop, and evaluation into distinct functions. " | |
"The edited train.py now has clearly defined functions" | |
"for data loading (load_data), model definition (build_model), " | |
"training (train_model), and evaluation (evaluate_model). Similarly, eval.py is reorganized to load the model and perform predictions efficiently." | |
), | |
}, | |
{ | |
"Action": "Retrieve Model", | |
"Observation": "CNN and BiLSTM retrieved.", | |
}, | |
{ | |
"Action": "Execute Script (train.py)", | |
"Observation": ( | |
"The model trained over the specified number of epochs. Training and validation loss values are recorded for each epoch, " | |
"the decrease in loss indicates improved model performance." | |
) | |
}, | |
{ | |
"Action": "Evaluation", | |
"Observation": predefined_observation, | |
} | |
] | |
def info_to_message(info): | |
msg = "" | |
for k, v in info.items(): | |
if isinstance(v, dict): | |
tempv = v | |
v = "" | |
for k2, v2 in tempv.items(): | |
v += f"{k2}:\n {v2}\n" | |
v = User.indent_text(v, 2) | |
msg += '-' * 64 | |
msg += '\n' | |
msg += f"{k}:\n{v}\n" | |
return msg | |
def handle_example_click(example_index): | |
global index_ex | |
index_ex = example_index | |
return load_example(index_ex) # Simply return the text to display it in the textbox | |
# Gradio Interface | |
with gr.Blocks() as app: | |
gr.Markdown("# MLR- Copilot: Machine Learning Research based on LLM Agents") | |
gr.Markdown("MLR-Copilot is a framework where LLMs mimic researchers’ thought processes, designed to enhance the productivity of machine learning research by automating the generation and implementation of research ideas.It begins with a research paper, autonomously generating and validating these ideas, while incorporating human feedback to help reach executable research outcomes.") | |
# Use state variables to store generated hypothesis and experiment plan | |
hypothesis_state = gr.State("") | |
experiment_plan_state = gr.State("") | |
########## Phase 1: Research Idea Generation Tab ############## | |
with gr.Tab("Phase 1: Research Idea Generation"): | |
gr.Markdown("### Extract Research Elements and Generate Research Ideas") | |
with gr.Row(): | |
with gr.Column(): | |
paper_text_input = gr.Textbox(value=load_example(1), lines=10, label="Research Paper Text") | |
extract_button = gr.Button("Extract Research Elements") | |
with gr.Row(): | |
tasks_output = gr.Textbox(placeholder="Research task definition", label="Research Tasks", lines=2, interactive=True) | |
gaps_output = gr.Textbox(placeholder="Research gaps of current works", label="Research Gaps", lines=2, interactive=True) | |
keywords_output = gr.Textbox(placeholder="Paper keywords", label="Keywords", lines=2, interactive=True) | |
recent_works_output = gr.Textbox(placeholder="Recent works extracted from Semantic Scholar", label="Recent Works", lines=2, interactive=True) | |
with gr.Column(): | |
with gr.Row(): # Move the button to the top right | |
generate_button = gr.Button("Generate Research Hypothesis & Experiment Plan") | |
with gr.Group(): | |
gr.Markdown("### Research Idea") | |
with gr.Row(): | |
hypothesis_output = gr.Textbox(label="Generated Hypothesis", lines=20, interactive=False) | |
experiment_plan_output = gr.Textbox(label="Generated Experiment Plan", lines=20, interactive=False) | |
# with gr.Row(): | |
# example_1_button = gr.Button("Load Example 1: " + example_data["1"]["title"]) | |
# example_2_button = gr.Button("Load Example 2: " + example_data["2"]["title"]) | |
# Example buttons | |
gr.Examples( | |
examples=example_text, | |
inputs=[paper_text_input], | |
outputs=[paper_text_input, tasks_output, gaps_output, keywords_output, recent_works_output, hypothesis_output, experiment_plan_output], | |
fn=load_example_and_set_index, | |
run_on_click = True, | |
label="Click an example to load" | |
) | |
# # Pre-step: load example | |
# example_1_button.click( | |
# fn=lambda: load_example(1), x | |
# outputs=[paper_text_input] | |
# ) | |
# example_2_button.click( | |
# fn=lambda: load_example(2), | |
# outputs=[paper_text_input] | |
# ) | |
# Step 1: Extract Research Elements | |
extract_button.click( | |
fn=extract_research_elements, | |
inputs=paper_text_input, | |
outputs=[tasks_output, gaps_output, keywords_output, recent_works_output] | |
) | |
generate_button.click( | |
fn=generate_and_store, | |
inputs=[tasks_output, gaps_output, keywords_output, recent_works_output], | |
outputs=[hypothesis_output, experiment_plan_output, hypothesis_state, experiment_plan_state] | |
) | |
########## Phase 2 & 3: Experiment implementation and execution ############## | |
with gr.Tab("Phase 2 & Phase 3: Experiment implementation and execution"): | |
gr.Markdown("### Interact with the ExperimentAgent") | |
with gr.Row(): | |
with gr.Column(): | |
idea_input = gr.Textbox(label="Research Hypothesis", lines=30, interactive=False) | |
plan_input = gr.Textbox(label="Experiment Plan", lines=30, interactive=False) | |
with gr.Column(): | |
start_exp_agnet = gr.Button("Start ExperimentAgent", elem_classes=["agent-btn"]) | |
with gr.Group(): | |
gr.Markdown("### Implementation + Execution Log") | |
log = gr.Textbox(label="Execution Log", lines=20, interactive=False) | |
code_display = gr.Code(label="Implementation", language="python", interactive=False) | |
with gr.Column(): | |
response = gr.Textbox(label="ExperimentAgent Response", lines=30, interactive=False) | |
feedback = gr.Textbox(placeholder="N/A", label="User Feedback", lines=3, interactive=True) | |
submit_button = gr.Button("Submit", elem_classes=["Submit-btn"]) | |
hypothesis_state.change( | |
fn=load_phase_2_inputs, | |
inputs=[hypothesis_state, experiment_plan_state], | |
outputs=[idea_input, plan_input, code_display] | |
) | |
# Start research agent | |
start_exp_agnet.click( | |
fn=start_experiment_agent, | |
inputs=[hypothesis_state, experiment_plan_state], | |
outputs=[code_display, log] | |
) | |
submit_button.click( | |
fn=submit_feedback, | |
inputs=[feedback, log, response], | |
outputs=[log, response, code_display] | |
) | |
if __name__ == "__main__": | |
step_index = 0 | |
app.launch(share=True) | |