DuckDB-SQL-Eval / app.py
tdoehmen's picture
yolo
acfff07
raw
history blame
5.39 kB
import gradio as gr
import spaces
import torch
import os
import sys
from pathlib import Path
from datetime import datetime
import json
# Add the duckdb-nsql directory to the Python path
sys.path.append('duckdb-nsql')
# Import necessary functions and classes from predict.py and evaluate.py
from eval.predict import cli as predict_cli, predict, console, get_manifest, DefaultLoader, PROMPT_FORMATTERS
from eval.evaluate import cli as evaluate_cli, evaluate, compute_metrics, get_to_print
from eval.evaluate import test_suite_evaluation, read_tables_json
zero = torch.Tensor([0]).cuda()
print(zero.device) # <-- 'cpu' πŸ€”
@spaces.GPU
def run_evaluation(model_name):
print(zero.device) # <-- 'cuda:0' πŸ€—
results = []
if "OPENROUTER_API_KEY" not in os.environ:
return "Error: OPENROUTER_API_KEY not found in environment variables."
try:
# Set up the arguments similar to the CLI in predict.py
dataset_path = "eval/data/dev.json"
table_meta_path = "eval/data/tables.json"
output_dir = "output/"
prompt_format = "duckdbinstgraniteshort"
stop_tokens = [';']
max_tokens = 30000
temperature = 0.1
num_beams = -1
manifest_client = "openrouter"
manifest_engine = model_name
manifest_connection = "http://localhost:5000"
overwrite_manifest = True
parallel = False
# Initialize necessary components
data_formatter = DefaultLoader()
prompt_formatter = PROMPT_FORMATTERS[prompt_format]()
# Load manifest
manifest = get_manifest(
manifest_client=manifest_client,
manifest_connection=manifest_connection,
manifest_engine=manifest_engine,
)
results.append(f"Using model: {manifest_engine}")
# Load data and metadata
results.append("Loading metadata and data...")
db_to_tables = data_formatter.load_table_metadata(table_meta_path)
data = data_formatter.load_data(dataset_path)
# Generate output filename
date_today = datetime.now().strftime("%y-%m-%d")
pred_filename = f"{prompt_format}_0docs_{manifest_engine.split('/')[-1]}_{Path(dataset_path).stem}_{date_today}.json"
pred_path = Path(output_dir) / pred_filename
results.append(f"Prediction will be saved to: {pred_path}")
# Run prediction
results.append("Starting prediction...")
predict(
dataset_path=dataset_path,
table_meta_path=table_meta_path,
output_dir=output_dir,
prompt_format=prompt_format,
stop_tokens=stop_tokens,
max_tokens=max_tokens,
temperature=temperature,
num_beams=num_beams,
manifest_client=manifest_client,
manifest_engine=manifest_engine,
manifest_connection=manifest_connection,
overwrite_manifest=overwrite_manifest,
parallel=parallel
)
results.append("Prediction completed.")
# Run evaluation
results.append("Starting evaluation...")
# Set up evaluation arguments
gold_path = Path(dataset_path)
db_dir = "eval/data/databases/"
tables_path = Path(table_meta_path)
kmaps = test_suite_evaluation.build_foreign_key_map_from_json(str(tables_path))
db_schemas = read_tables_json(str(tables_path))
gold_sqls_dict = json.load(gold_path.open("r", encoding="utf-8"))
pred_sqls_dict = [json.loads(l) for l in pred_path.open("r").readlines()]
gold_sqls = [p.get("query", p.get("sql", "")) for p in gold_sqls_dict]
setup_sqls = [p["setup_sql"] for p in gold_sqls_dict]
validate_sqls = [p["validation_sql"] for p in gold_sqls_dict]
gold_dbs = [p.get("db_id", p.get("db", "")) for p in gold_sqls_dict]
pred_sqls = [p["pred"] for p in pred_sqls_dict]
categories = [p.get("category", "") for p in gold_sqls_dict]
metrics = compute_metrics(
gold_sqls=gold_sqls,
pred_sqls=pred_sqls,
gold_dbs=gold_dbs,
setup_sqls=setup_sqls,
validate_sqls=validate_sqls,
kmaps=kmaps,
db_schemas=db_schemas,
database_dir=db_dir,
lowercase_schema_match=False,
model_name=model_name,
categories=categories,
)
results.append("Evaluation completed.")
# Format and add the evaluation metrics to the results
if metrics:
to_print = get_to_print({"all": metrics}, "all", model_name, len(gold_sqls))
formatted_metrics = "\n".join([f"{k}: {v}" for k, v in to_print.items() if k not in ["slice", "model"]])
results.append(f"Evaluation metrics:\n{formatted_metrics}")
else:
results.append("No evaluation metrics returned.")
except Exception as e:
results.append(f"An unexpected error occurred: {str(e)}")
return "\n\n".join(results)
with gr.Blocks() as demo:
gr.Markdown("# DuckDB SQL Evaluation App")
model_name = gr.Textbox(label="Model Name (e.g., qwen/qwen-2.5-72b-instruct)")
start_btn = gr.Button("Start Evaluation")
output = gr.Textbox(label="Output", lines=20)
start_btn.click(fn=run_evaluation, inputs=[model_name], outputs=output)
demo.launch()