Spaces:
Sleeping
Sleeping
import datasets | |
from transformers import ViTImageProcessor, ViTForImageClassification | |
import torch | |
import gradio as gr | |
dataset = datasets.load_dataset('beans') # This should be the same as the first line of Python code in this Colab notebook | |
feature_extractor = ViTImageProcessor.from_pretrained("saved_model_files") | |
model = ViTForImageClassification.from_pretrained("saved_model_files") | |
labels = dataset['train'].features['labels'].names | |
def classify(im): | |
features = feature_extractor(im, return_tensors='pt') | |
logits = model(features["pixel_values"])[-1] | |
probability = torch.nn.functional.softmax(logits, dim=-1) | |
probs = probability[0].detach().numpy() | |
confidences = {label: float(probs[i]) for i, label in enumerate(labels)} | |
return confidences | |
description = "Bean leaf classifier for CV class" | |
interface = gr.Interface(fn=classify, inputs="image", outputs="label", title="Bean leaf classification!", description=description ) | |
interface.launch(debug=True) |