duyduong9htv's picture
Update app.py
f3a5cd4
import datasets
from transformers import ViTImageProcessor, ViTForImageClassification
import torch
import gradio as gr
dataset = datasets.load_dataset('beans') # This should be the same as the first line of Python code in this Colab notebook
feature_extractor = ViTImageProcessor.from_pretrained("saved_model_files")
model = ViTForImageClassification.from_pretrained("saved_model_files")
labels = dataset['train'].features['labels'].names
def classify(im):
features = feature_extractor(im, return_tensors='pt')
logits = model(features["pixel_values"])[-1]
probability = torch.nn.functional.softmax(logits, dim=-1)
probs = probability[0].detach().numpy()
confidences = {label: float(probs[i]) for i, label in enumerate(labels)}
return confidences
description = "Bean leaf classifier for CV class"
interface = gr.Interface(fn=classify, inputs="image", outputs="label", title="Bean leaf classification!", description=description )
interface.launch(debug=True)