File size: 10,436 Bytes
e06a0ac
f48fdee
1cfb5a5
 
 
e06a0ac
1cfb5a5
 
 
 
 
 
 
 
 
 
 
e06a0ac
 
 
 
 
 
 
 
 
 
1cfb5a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8c8f99
1cfb5a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e06a0ac
b040a24
 
 
 
 
 
 
e06a0ac
b040a24
 
 
 
 
e06a0ac
b040a24
1cfb5a5
7a6396f
b1f2ae2
 
1cfb5a5
 
25986b9
1cfb5a5
e06a0ac
1cfb5a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6065dfd
1cfb5a5
 
 
4c2115f
1cfb5a5
51c6bf0
 
 
 
 
 
 
 
e06a0ac
51c6bf0
beacb7a
e44c331
beacb7a
 
 
 
 
e06a0ac
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import os
import spaces
import gradio as gr
from transformers import AutoProcessor, AutoModelForCausalLM
# import peft

import requests
import copy

from PIL import Image, ImageDraw, ImageFont 
import io
import matplotlib.pyplot as plt
import matplotlib.patches as patches

import random
import numpy as np

from transformers import AutoProcessor, AutoModelForCausalLM
from detectron2.config import get_cfg
from detectron2.engine import DefaultPredictor
from detectron2 import model_zoo
from detectron2.utils.visualizer import Visualizer, ColorMode
from detectron2.data import MetadataCatalog
import cv2
import numpy as np
import matplotlib.pyplot as plt

import subprocess
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)

models = {
    'microsoft/Florence-2-large-ft': AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-large-ft', trust_remote_code=True).to("cuda").eval(),
    'dwb2023/florence2-large-bccd-base-ft': AutoModelForCausalLM.from_pretrained('dwb2023/florence2-large-bccd-base-ft', trust_remote_code=True).to("cuda").eval(),
}

processors = {
    'microsoft/Florence-2-large-ft': AutoProcessor.from_pretrained('microsoft/Florence-2-large-ft', trust_remote_code=True),
    'dwb2023/florence2-large-bccd-base-ft': AutoProcessor.from_pretrained('microsoft/Florence-2-large-ft', trust_remote_code=True),  
}

colormap = ['blue','orange','green','purple','brown','pink','gray','olive','cyan','red',
            'lime','indigo','violet','aqua','magenta','coral','gold','tan','skyblue']

def fig_to_pil(fig):
    buf = io.BytesIO()
    fig.savefig(buf, format='png')
    buf.seek(0)
    return Image.open(buf)

@spaces.GPU
def run_example(task_prompt, image, text_input=None, model_id='microsoft/Florence-2-large'):
    model = models[model_id]
    processor = processors[model_id]
    if text_input is None:
        prompt = task_prompt
    else:
        prompt = task_prompt + text_input
    inputs = processor(text=prompt, images=image, return_tensors="pt").to("cuda")
    generated_ids = model.generate(
        input_ids=inputs["input_ids"],
        pixel_values=inputs["pixel_values"],
        max_new_tokens=1024,
        early_stopping=False,
        do_sample=False,
        num_beams=3,
    )
    generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
    parsed_answer = processor.post_process_generation(
        generated_text,
        task=task_prompt,
        image_size=(image.width, image.height)
    )
    return parsed_answer

def plot_bbox(image, data):
    fig, ax = plt.subplots()
    ax.imshow(image)
    for bbox, label in zip(data['bboxes'], data['labels']):
        x1, y1, x2, y2 = bbox
        rect = patches.Rectangle((x1, y1), x2-x1, y2-y1, linewidth=1, edgecolor='r', facecolor='none')
        ax.add_patch(rect)
        plt.text(x1, y1, label, color='white', fontsize=8, bbox=dict(facecolor='red', alpha=0.5))
    ax.axis('off')
    return fig

def draw_polygons(image, prediction, fill_mask=False):

    draw = ImageDraw.Draw(image)
    scale = 1
    for polygons, label in zip(prediction['polygons'], prediction['labels']):
        color = random.choice(colormap)
        fill_color = random.choice(colormap) if fill_mask else None
        for _polygon in polygons:
            _polygon = np.array(_polygon).reshape(-1, 2)
            if len(_polygon) < 3:
                print('Invalid polygon:', _polygon)
                continue
            _polygon = (_polygon * scale).reshape(-1).tolist()
            if fill_mask:
                draw.polygon(_polygon, outline=color, fill=fill_color)
            else:
                draw.polygon(_polygon, outline=color)
            draw.text((_polygon[0] + 8, _polygon[1] + 2), label, fill=color)
    return image

def convert_to_od_format(data):
    bboxes = data.get('bboxes', [])
    labels = data.get('bboxes_labels', [])
    od_results = {
        'bboxes': bboxes,
        'labels': labels
    }
    return od_results

def draw_ocr_bboxes(image, prediction):
    scale = 1
    draw = ImageDraw.Draw(image)
    bboxes, labels = prediction['quad_boxes'], prediction['labels']
    for box, label in zip(bboxes, labels):
        color = random.choice(colormap)
        new_box = (np.array(box) * scale).tolist()
        draw.polygon(new_box, width=3, outline=color)
        draw.text((new_box[0]+8, new_box[1]+2),
                  "{}".format(label),
                  align="right",
                  fill=color)
    return image

def process_image(image, task_prompt, text_input=None, model_id='dwb2023/florence2-large-bccd-base-ft'):
    image = Image.fromarray(image)  # Convert NumPy array to PIL Image
    if task_prompt == 'Object Detection':
        task_prompt = '<OD>'
        results = run_example(task_prompt, image, model_id=model_id)
        fig = plot_bbox(image, results['<OD>'])
        return results, fig_to_pil(fig)
    else:
        return "", None  # Return empty string and None for unknown task prompts

single_task_list =[
    'Object Detection'
]

# Detectron2 configuration
cfg = get_cfg()
cfg.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"))
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5
cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml")
cfg.MODEL.DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
predictor = DefaultPredictor(cfg)

def process_image_with_detectron2(image_name):
    image_path = os.path.join(example_image_dir, image_name)
    image = cv2.imread(image_path)
    outputs = predictor(image)
    v = Visualizer(image[:, :, ::-1], MetadataCatalog.get(cfg.DATASETS.TRAIN[0]), scale=1.2)
    out = v.draw_instance_predictions(outputs["instances"].to("cpu"))
    return Image.fromarray(out.get_image()[:, :, ::-1])

with gr.Blocks(theme="sudeepshouche/minimalist") as demo:
    gr.Markdown("## 🧬OmniScience - building teams of fine tuned VLM models for diagnosis and detection 🔧")
    gr.Markdown("- 🔬Florence-2 Model Proof of Concept, focusing on Object Detection <OD> tasks.")
    gr.Markdown("- Fine-tuned for 🩸Blood Cell Detection using the [Roboflow BCCD dataset](https://universe.roboflow.com/roboflow-100/bccd-ouzjz/dataset/2), this model can detect blood cells and types in images.")
    gr.Markdown("")
    gr.Markdown("BCCD Datasets on Hugging Face:")
    gr.Markdown("- [🌺 Florence 2](https://huggingface.co/datasets/dwb2023/roboflow100-bccd-florence2/viewer/default/test?q=BloodImage_00038_jpg.rf.1b0ce1635e11b3b49302de527c86bb02.jpg), [💎 PaliGemma](https://huggingface.co/datasets/dwb2023/roboflow-bccd-paligemma/viewer/default/test?q=BloodImage_00038_jpg.rf.1b0ce1635e11b3b49302de527c86bb02.jpg)")


    with gr.Tab(label="Florence-2 Object Detection"):
        with gr.Row():
            with gr.Column():
                input_img = gr.Image(label="Input Picture")
                model_selector = gr.Dropdown(choices=list(models.keys()), label="Model", value='microsoft/Florence-2-large-ft')
                task_prompt = gr.Dropdown(choices=single_task_list, label="Task Prompt", value="Object Detection")
                text_input = gr.Textbox(label="Text Input", placeholder="Not used for Florence-2 Object Detection")
                submit_btn = gr.Button(value="Submit")
            with gr.Column():
                output_text = gr.Textbox(label="Output Text")
                output_img = gr.Image(label="Output Image")

        gr.Examples(
            examples=[
                ["examples/bccd-test/BloodImage_00038_jpg.rf.1b0ce1635e11b3b49302de527c86bb02.jpg", 'Object Detection'],
                ["examples/bccd-test/BloodImage_00044_jpg.rf.1c44102fcdf64fd178f1f16bb988d5cf.jpg", 'Object Detection'],
                ["examples/bccd-test/BloodImage_00062_jpg.rf.fbed5373cd2e0e732092ed5c7b28aa19.jpg", 'Object Detection'],
                ["examples/bccd-test/BloodImage_00090_jpg.rf.7e3d419774b20ef93d4ec6c4be8f64df.jpg", 'Object Detection'],
                ["examples/bccd-test/BloodImage_00099_jpg.rf.0a65e56401cdd71253e7bc04917c3558.jpg", 'Object Detection'],
                ["examples/bccd-test/BloodImage_00112_jpg.rf.6b8d185de08e65c6d765c824bb76ec68.jpg", 'Object Detection'],
                ["examples/bccd-test/BloodImage_00113_jpg.rf.ab69dfaa52c1b3249cf44fa66afbb619.jpg", 'Object Detection'],
                ["examples/bccd-test/BloodImage_00120_jpg.rf.4a2f84ca3564ef453b12ceb9c852e32e.jpg", 'Object Detection'],
            ],
            
            inputs=[input_img, task_prompt],
            outputs=[output_text, output_img],
            fn=process_image,
            cache_examples=False,
            label='Try examples'
        )

        submit_btn.click(process_image, [input_img, task_prompt, model_selector], [output_text, output_img])

    with gr.Tab(label="Segmentation"):
        with gr.Row():
            with gr.Column():
                input_img = gr.Dropdown(choices=example_images, label="Input Picture", value=example_images[0])
                submit_btn = gr.Button(value="Submit")
            with gr.Column():
                output_img = gr.Image(label="Output Image")

        submit_btn.click(process_segmentation, inputs=[input_img], outputs=[output_img])
    
    gr.Markdown("## 🚀Other Cool Stuff:")
    gr.Markdown("- [Florence 2 Whitepaper](https://arxiv.org/pdf/2311.06242) - how I found out about the Roboflow 100 and the BCCD dataset.  Turns out this nugget was from the original [Florence whitepaper](https://arxiv.org/pdf/2111.11432) but useful all the same!")
    gr.Markdown("- [Roboflow YouTube Video on Florence 2 fine-tuning](https://youtu.be/i3KjYgxNH6w?si=x1ZMg9hsNe25Y19-&t=1296) - bookmarked an 🧠insightful trade-off analysis of various VLMs.")
    gr.Markdown("- [Landing AI - Vision Agent](https://va.landing.ai/) - 🌟just pure WOW.  bringing agentic planning into solutions architecture.")
    gr.Markdown("- [OmniScience fork of Landing AI repo](https://huggingface.co/spaces/dwb2023/omniscience) - I had a lot of fun with this one... some great 🔍reverse engineering enabled by W&B's Weave📊.")
    gr.Markdown("- [Scooby Snacks🐕  - microservice based function calling with style](https://huggingface.co/spaces/dwb2023/blackbird-app) - Leveraging 🤖Claude Sonnet 3.5 to orchestrate Microservice-Based Function Calling.")

demo.launch(debug=True)