Spaces:
Sleeping
Sleeping
import os | |
import spaces | |
import gradio as gr | |
from transformers import AutoProcessor, AutoModelForCausalLM | |
# import peft | |
import requests | |
import copy | |
from PIL import Image, ImageDraw, ImageFont | |
import io | |
import matplotlib.pyplot as plt | |
import matplotlib.patches as patches | |
import random | |
import numpy as np | |
from transformers import AutoProcessor, AutoModelForCausalLM | |
from detectron2.config import get_cfg | |
from detectron2.engine import DefaultPredictor | |
from detectron2 import model_zoo | |
from detectron2.utils.visualizer import Visualizer, ColorMode | |
from detectron2.data import MetadataCatalog | |
import cv2 | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import subprocess | |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
models = { | |
'microsoft/Florence-2-large-ft': AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-large-ft', trust_remote_code=True).to("cuda").eval(), | |
'dwb2023/florence2-large-bccd-base-ft': AutoModelForCausalLM.from_pretrained('dwb2023/florence2-large-bccd-base-ft', trust_remote_code=True).to("cuda").eval(), | |
} | |
processors = { | |
'microsoft/Florence-2-large-ft': AutoProcessor.from_pretrained('microsoft/Florence-2-large-ft', trust_remote_code=True), | |
'dwb2023/florence2-large-bccd-base-ft': AutoProcessor.from_pretrained('microsoft/Florence-2-large-ft', trust_remote_code=True), | |
} | |
colormap = ['blue','orange','green','purple','brown','pink','gray','olive','cyan','red', | |
'lime','indigo','violet','aqua','magenta','coral','gold','tan','skyblue'] | |
def fig_to_pil(fig): | |
buf = io.BytesIO() | |
fig.savefig(buf, format='png') | |
buf.seek(0) | |
return Image.open(buf) | |
def run_example(task_prompt, image, text_input=None, model_id='microsoft/Florence-2-large'): | |
model = models[model_id] | |
processor = processors[model_id] | |
if text_input is None: | |
prompt = task_prompt | |
else: | |
prompt = task_prompt + text_input | |
inputs = processor(text=prompt, images=image, return_tensors="pt").to("cuda") | |
generated_ids = model.generate( | |
input_ids=inputs["input_ids"], | |
pixel_values=inputs["pixel_values"], | |
max_new_tokens=1024, | |
early_stopping=False, | |
do_sample=False, | |
num_beams=3, | |
) | |
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0] | |
parsed_answer = processor.post_process_generation( | |
generated_text, | |
task=task_prompt, | |
image_size=(image.width, image.height) | |
) | |
return parsed_answer | |
def plot_bbox(image, data): | |
fig, ax = plt.subplots() | |
ax.imshow(image) | |
for bbox, label in zip(data['bboxes'], data['labels']): | |
x1, y1, x2, y2 = bbox | |
rect = patches.Rectangle((x1, y1), x2-x1, y2-y1, linewidth=1, edgecolor='r', facecolor='none') | |
ax.add_patch(rect) | |
plt.text(x1, y1, label, color='white', fontsize=8, bbox=dict(facecolor='red', alpha=0.5)) | |
ax.axis('off') | |
return fig | |
def draw_polygons(image, prediction, fill_mask=False): | |
draw = ImageDraw.Draw(image) | |
scale = 1 | |
for polygons, label in zip(prediction['polygons'], prediction['labels']): | |
color = random.choice(colormap) | |
fill_color = random.choice(colormap) if fill_mask else None | |
for _polygon in polygons: | |
_polygon = np.array(_polygon).reshape(-1, 2) | |
if len(_polygon) < 3: | |
print('Invalid polygon:', _polygon) | |
continue | |
_polygon = (_polygon * scale).reshape(-1).tolist() | |
if fill_mask: | |
draw.polygon(_polygon, outline=color, fill=fill_color) | |
else: | |
draw.polygon(_polygon, outline=color) | |
draw.text((_polygon[0] + 8, _polygon[1] + 2), label, fill=color) | |
return image | |
def convert_to_od_format(data): | |
bboxes = data.get('bboxes', []) | |
labels = data.get('bboxes_labels', []) | |
od_results = { | |
'bboxes': bboxes, | |
'labels': labels | |
} | |
return od_results | |
def draw_ocr_bboxes(image, prediction): | |
scale = 1 | |
draw = ImageDraw.Draw(image) | |
bboxes, labels = prediction['quad_boxes'], prediction['labels'] | |
for box, label in zip(bboxes, labels): | |
color = random.choice(colormap) | |
new_box = (np.array(box) * scale).tolist() | |
draw.polygon(new_box, width=3, outline=color) | |
draw.text((new_box[0]+8, new_box[1]+2), | |
"{}".format(label), | |
align="right", | |
fill=color) | |
return image | |
def process_image(image, task_prompt, text_input=None, model_id='dwb2023/florence2-large-bccd-base-ft'): | |
image = Image.fromarray(image) # Convert NumPy array to PIL Image | |
if task_prompt == 'Object Detection': | |
task_prompt = '<OD>' | |
results = run_example(task_prompt, image, model_id=model_id) | |
fig = plot_bbox(image, results['<OD>']) | |
return results, fig_to_pil(fig) | |
else: | |
return "", None # Return empty string and None for unknown task prompts | |
single_task_list =[ | |
'Object Detection' | |
] | |
# Detectron2 configuration | |
cfg = get_cfg() | |
cfg.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml")) | |
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5 | |
cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml") | |
cfg.MODEL.DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
predictor = DefaultPredictor(cfg) | |
def process_image_with_detectron2(image_name): | |
image_path = os.path.join(example_image_dir, image_name) | |
image = cv2.imread(image_path) | |
outputs = predictor(image) | |
v = Visualizer(image[:, :, ::-1], MetadataCatalog.get(cfg.DATASETS.TRAIN[0]), scale=1.2) | |
out = v.draw_instance_predictions(outputs["instances"].to("cpu")) | |
return Image.fromarray(out.get_image()[:, :, ::-1]) | |
with gr.Blocks(theme="sudeepshouche/minimalist") as demo: | |
gr.Markdown("## 🧬OmniScience - building teams of fine tuned VLM models for diagnosis and detection 🔧") | |
gr.Markdown("- 🔬Florence-2 Model Proof of Concept, focusing on Object Detection <OD> tasks.") | |
gr.Markdown("- Fine-tuned for 🩸Blood Cell Detection using the [Roboflow BCCD dataset](https://universe.roboflow.com/roboflow-100/bccd-ouzjz/dataset/2), this model can detect blood cells and types in images.") | |
gr.Markdown("") | |
gr.Markdown("BCCD Datasets on Hugging Face:") | |
gr.Markdown("- [🌺 Florence 2](https://huggingface.co/datasets/dwb2023/roboflow100-bccd-florence2/viewer/default/test?q=BloodImage_00038_jpg.rf.1b0ce1635e11b3b49302de527c86bb02.jpg), [💎 PaliGemma](https://huggingface.co/datasets/dwb2023/roboflow-bccd-paligemma/viewer/default/test?q=BloodImage_00038_jpg.rf.1b0ce1635e11b3b49302de527c86bb02.jpg)") | |
with gr.Tab(label="Florence-2 Object Detection"): | |
with gr.Row(): | |
with gr.Column(): | |
input_img = gr.Image(label="Input Picture") | |
model_selector = gr.Dropdown(choices=list(models.keys()), label="Model", value='microsoft/Florence-2-large-ft') | |
task_prompt = gr.Dropdown(choices=single_task_list, label="Task Prompt", value="Object Detection") | |
text_input = gr.Textbox(label="Text Input", placeholder="Not used for Florence-2 Object Detection") | |
submit_btn = gr.Button(value="Submit") | |
with gr.Column(): | |
output_text = gr.Textbox(label="Output Text") | |
output_img = gr.Image(label="Output Image") | |
gr.Examples( | |
examples=[ | |
["examples/bccd-test/BloodImage_00038_jpg.rf.1b0ce1635e11b3b49302de527c86bb02.jpg", 'Object Detection'], | |
["examples/bccd-test/BloodImage_00044_jpg.rf.1c44102fcdf64fd178f1f16bb988d5cf.jpg", 'Object Detection'], | |
["examples/bccd-test/BloodImage_00062_jpg.rf.fbed5373cd2e0e732092ed5c7b28aa19.jpg", 'Object Detection'], | |
["examples/bccd-test/BloodImage_00090_jpg.rf.7e3d419774b20ef93d4ec6c4be8f64df.jpg", 'Object Detection'], | |
["examples/bccd-test/BloodImage_00099_jpg.rf.0a65e56401cdd71253e7bc04917c3558.jpg", 'Object Detection'], | |
["examples/bccd-test/BloodImage_00112_jpg.rf.6b8d185de08e65c6d765c824bb76ec68.jpg", 'Object Detection'], | |
["examples/bccd-test/BloodImage_00113_jpg.rf.ab69dfaa52c1b3249cf44fa66afbb619.jpg", 'Object Detection'], | |
["examples/bccd-test/BloodImage_00120_jpg.rf.4a2f84ca3564ef453b12ceb9c852e32e.jpg", 'Object Detection'], | |
], | |
inputs=[input_img, task_prompt], | |
outputs=[output_text, output_img], | |
fn=process_image, | |
cache_examples=False, | |
label='Try examples' | |
) | |
submit_btn.click(process_image, [input_img, task_prompt, model_selector], [output_text, output_img]) | |
with gr.Tab(label="Segmentation"): | |
with gr.Row(): | |
with gr.Column(): | |
input_img = gr.Dropdown(choices=example_images, label="Input Picture", value=example_images[0]) | |
submit_btn = gr.Button(value="Submit") | |
with gr.Column(): | |
output_img = gr.Image(label="Output Image") | |
submit_btn.click(process_segmentation, inputs=[input_img], outputs=[output_img]) | |
gr.Markdown("## 🚀Other Cool Stuff:") | |
gr.Markdown("- [Florence 2 Whitepaper](https://arxiv.org/pdf/2311.06242) - how I found out about the Roboflow 100 and the BCCD dataset. Turns out this nugget was from the original [Florence whitepaper](https://arxiv.org/pdf/2111.11432) but useful all the same!") | |
gr.Markdown("- [Roboflow YouTube Video on Florence 2 fine-tuning](https://youtu.be/i3KjYgxNH6w?si=x1ZMg9hsNe25Y19-&t=1296) - bookmarked an 🧠insightful trade-off analysis of various VLMs.") | |
gr.Markdown("- [Landing AI - Vision Agent](https://va.landing.ai/) - 🌟just pure WOW. bringing agentic planning into solutions architecture.") | |
gr.Markdown("- [OmniScience fork of Landing AI repo](https://huggingface.co/spaces/dwb2023/omniscience) - I had a lot of fun with this one... some great 🔍reverse engineering enabled by W&B's Weave📊.") | |
gr.Markdown("- [Scooby Snacks🐕 - microservice based function calling with style](https://huggingface.co/spaces/dwb2023/blackbird-app) - Leveraging 🤖Claude Sonnet 3.5 to orchestrate Microservice-Based Function Calling.") | |
demo.launch(debug=True) |