Compliance_Test / app.py
dwipper's picture
Create app.py
289132f
raw
history blame
13.3 kB
import os
import openai
import datetime
import gradio as gr
import json
from jinja2 import Template
import requests
from dotenv import load_dotenv
load_dotenv()
# Initialize OpenAI
openai.api_key = os.environ.get('OPENAI_API_KEY')
# Configuration variables
airtable_api_key = os.environ.get('AIRTABLE_API_KEY')
# Airtable table names
policies_table_name = 'tbla6PC65qZfqdJhE'
prompts_table_name = 'tblYIZEB8m6JkGDEP'
qalog_table_name = 'tbl4oNgFPWM5xH1XO'
examples_table_name = 'tblu7sraOEmRgEGkp'
users_table_name = 'tblLNe5ZL47SvrAEk'
user_log_table_name = 'tblrlTsRrkl6BqMAJ'
# Define the style and content for the response field
label_text = "NILI Response"
color = "#6562F4"
background_color = "white"
border_radius = "10px"
response_label = f'<h3 style="color: {color}; background-color: {background_color}; border-radius: {border_radius}; padding: 10px;display: inline-block;">{label_text}</h3>'
#Airtable Base ID
base_id = 'appcUK3hUWC7GM2Kb'
#Name of the prompt temlate record
prompt_name = "NILI_v1"
#Header for the Airtable requests
headers = {
"Authorization": f"Bearer {airtable_api_key}",
"Content-Type": "application/json",
"Accept": "application/json",
}
#Function to trim prompts....not used
def prompt_trim(prompt: str) -> str:
lines = prompt.split('\n')
trimmed = '\n'.join([l.strip() for l in lines])
return trimmed
#Get the policies for the selected schools and concatenate them.
def get_policies(school_selection):
airtable_endpoint = f'https://api.airtable.com/v0/{base_id}/{policies_table_name}'
# Parameters for the API request to filter by 'school' field and retrieve 'policy_text'
params = {
'filterByFormula': "OR({})".format(','.join(["school='{}'".format(school) for school in school_selection])),
'fields[]': 'policy_text', # Replace with the name of your field
}
# Initialize an empty string to store concatenated policies
concatenated_policies = ''
#print(params)
try:
# Send a GET request to the Airtable API
response = requests.get(airtable_endpoint, headers=headers, params=params)
# Check if the request was successful (status code 200)
if response.status_code == 200:
# Parse the JSON response
data = response.json()
# Check if there are records in the response
if data.get('records'):
# Extract the 'policy_text' values from each record and concatenate them
for record in data['records']:
policy_text = record['fields']['policy_text']
if concatenated_policies:
concatenated_policies += "\n----------\n"
concatenated_policies += policy_text
else:
print("No records found in the 'policies' table for the selected schools.")
else:
print(f"Failed to retrieve data. Status code: {response.status_code}")
except Exception as e:
print(f"An error occurred: {str(e)}")
#print(concatenated_policies)
return concatenated_policies
#Get a list of School Name from the policies for the UI dropdown
def get_schools():
airtable_endpoint = f'https://api.airtable.com/v0/{base_id}/{policies_table_name}'
# Parameters for the API request to select only the 'school' field
params = {
'fields[]': 'school', # Replace with the name of your field
'sort[0][field]': 'school', # Sort by the 'school' field
'sort[0][direction]': 'asc', # Sort in ascending order
}
schools = ''
try:
# Send a GET request to the Airtable API
response = requests.get(airtable_endpoint, headers=headers, params=params)
# Check if the request was successful (status code 200)
if response.status_code == 200:
# Parse the JSON response
data = response.json()
# Check if there are records in the response
if data.get('records'):
# Extract the 'school' values from each record
schools = [record['fields']['school'] for record in data['records']]
else:
print("No records found in the 'policies' table.")
else:
print(f"Failed to retrieve data. Status code: {response.status_code}")
except Exception as e:
print(f"An error occurred: {str(e)}")
return schools
#Get the designated prompt template record
def get_prompt(header, template_content):
airtable_endpoint = f'https://api.airtable.com/v0/{base_id}/{prompts_table_name}'
params = {
'filterByFormula': "prompt_name='NILI_v1'"
}
response = requests.get(airtable_endpoint, headers=headers, params=params)
# Check for errors
response.raise_for_status()
data = response.json()
# Check if there is at least one record matching the condition
if data.get('records'):
# Get the first record (there should be only one)
record = data['records'][0]['fields']
# Assign system_prompt and user_prompt to variables
header = record.get('system_prompt', '')
template_content = record.get('user_prompt', '')
return header, template_content
def get_examples():
airtable_endpoint = f'https://api.airtable.com/v0/{base_id}/{examples_table_name}'
# Send your request and parse the response
response = requests.get(airtable_endpoint, headers=headers)
data = json.loads(response.text)
# Check for errors
response.raise_for_status()
for record in data['records']:
nil_question = record['fields']['nil_question']
ui_examples.append([None, None, None, nil_question])
#print(ui_examples)
def append_to_at_qalog(your_role, school_selection, output_format, input_text, gpt_response,response_time,question_cost,prompt_tokens,completion_tokens):
airtable_endpoint = f'https://api.airtable.com/v0/{base_id}/{qalog_table_name}'
# Organize data for Airtable
new_fields = {
'your_role': str(your_role),
'school_selection': str(school_selection),
'output_format': str(output_format),
'input_text': str(input_text),
'gpt_response': str(gpt_response),
'response_time': str(response_time),
'question_cost': question_cost,
'user_name': str(logged_in_user),
'prompt_tokens': prompt_tokens,
'completion_tokens': completion_tokens
}
data = {
'fields': new_fields
}
try:
# Post data to Airtable
response = requests.post(airtable_endpoint, headers=headers, json=data)
# Check for errors
response.raise_for_status()
except requests.exceptions.HTTPError as http_error:
# Handle the HTTP error (e.g., log it or display an error message)
print(f"HTTP error occurred: {http_error}")
except Exception as e:
# Handle exceptions, log errors, or raise them as needed
print(f"An error occurred: {str(e)}")
#Chatbot Function
def chatbot(your_role,school_selection,output_format,input_text):
start_time = datetime.datetime.now()
# school_selection holds an array of one or more schools
#print(school_selection)
# Read the Hydrated policies
policies = get_policies(school_selection)
template_content = ''
header = ''
header, template_content = get_prompt(header, template_content)
#print(header)
#print(template_content)
header_template = Template(header)
merged_header = header_template.render(your_role=your_role)
# Create a Jinja2 template from the content
template = Template(template_content)
# Render the template with the policy JSON
analysis_input = template.render(policies=policies, question=input_text,format=output_format,your_role=your_role)
trimmed_input = prompt_trim(analysis_input)
with open('analysis_input.txt', 'w', encoding='utf-8') as out_file:
out_file.write(trimmed_input)
response = openai.ChatCompletion.create(
model="gpt-4",
#model="gpt-3.5-turbo",
temperature=0,
messages=[
{
"role": "system",
"content": merged_header
},
{
"role": "user",
"content": analysis_input
}
]
)
gpt_response = response.choices[0].message["content"]
tokens_used = response.usage
question_cost = (tokens_used.get('total_tokens', 0) / 1000) * .03
prompt_tokens = tokens_used.get('prompt_tokens',)
completion_tokens = tokens_used.get('completion_tokens', 0)
"""
with open('response.txt', 'w', encoding='utf-8') as out_file:
out_file.write(gpt_response)
"""
end_time = datetime.datetime.now()
response_time = end_time - start_time
append_to_at_qalog(your_role, school_selection, output_format, input_text, gpt_response,response_time,question_cost,prompt_tokens,completion_tokens)
return response_label,gpt_response
def log_login(username):
airtable_endpoint = f'https://api.airtable.com/v0/{base_id}/{user_log_table_name}'
# Organize data for Airtable
new_fields = {
'user_name': str(username),
}
data = {
'fields': new_fields
}
try:
# Post data to Airtable
response = requests.post(airtable_endpoint, headers=headers, json=data)
# Check for errors
response.raise_for_status()
except requests.exceptions.HTTPError as http_error:
# Handle the HTTP error (e.g., log it or display an error message)
print(f"HTTP error occurred: {http_error}")
except Exception as e:
# Handle exceptions, log errors, or raise them as needed
print(f"An error occurred: {str(e)}")
def login_auth(username, password):
airtable_endpoint = f'https://api.airtable.com/v0/{base_id}/{users_table_name}'
# Query the 'users' table to check for a match with the provided username and password
params = {
'filterByFormula': f'AND(user_name = "{username}", password = "{password}")'
}
response = requests.get(airtable_endpoint, headers=headers, params=params)
if response.status_code == 200:
data = response.json()
#If the matching user/password record is found:
if data.get('records'):
#Log that the user logged in
log_login(username)
#Set the global logged_in_user variable. This used in the append_to_at_qalog function to track what user asked the question
global logged_in_user
logged_in_user = username
return True
print(f"Invalid user/password combination")
return False
#Gradio UI
CIMStheme = gr.themes.Soft().set(button_primary_background_fill='#6562F4')
# Initialize an empty list to store the examples
ui_examples = []
school_selection = []
schools = get_schools()
get_examples()
logged_in_user = 'admin'
with gr.Blocks(CIMStheme) as iface:
with gr.Row():
with gr.Column(scale=2):
gr.Image(label="Logo",value="CIMS Logo Purple.png",width=10,show_download_button=False,interactive=False,show_label=False,elem_id="logo",container=False)
with gr.Column(scale=2):
#gr.Textbox(value="# NILI - Powered by CIMS.AI",show_label=False,interactive=False,text_align="center",elem_id="CIMSTitle")
gr.Markdown(value="# NILI - Powered by CIMS.AI")
with gr.Column(scale=2):
gr.Markdown("")
with gr.Row():
with gr.Column():
gr.Interface(fn=chatbot,
inputs=[
gr.components.Dropdown(["Student Athlete","Parent","Athletic Director"],multiselect=False,info="Select a role.",label="User Role", ),
gr.components.Dropdown(schools,multiselect=True,info="Select one or more schools. This will help set the context of your question.",label="School Context"),
gr.components.Dropdown(["Summary","Detailed Analysis","Table"],multiselect=False,info="Select the desired output format.",label="Output Format"),
gr.components.Textbox(lines=5, placeholder="Enter your question here", label="NIL Question")],
outputs=[
gr.components.Markdown(response_label),
gr.components.HTML(label="NILI Response")
],
description="Ask any question about Name, Image, Likeness (NIL)",
allow_flagging="manual",
examples=ui_examples,
cache_examples=False,
flagging_options=["The response is incorrect","The response is inappropriate","The response doesn't make sense"]
)
with gr.Row():
with gr.Column():
gr.HTML('<center><i>CIMS.AI Confidential 2023</i></center>')
iface.launch(auth=login_auth, auth_message= "Enter your username and password that you received from CIMS.AI. To request a login, please email 'info@cims.ai'")
#iface.launch(share=True)