Spaces:
Sleeping
Sleeping
import os | |
import openai | |
import streamlit as st | |
from langchain.agents import AgentType, initialize_agent, load_tools | |
from langchain.llms import OpenAI as l_OpenAI | |
from transformers import pipeline | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
from helpers.foundation_models import * | |
import requests | |
OPENAI_API_KEY = os.environ["OPENAI_API_KEY"] | |
SERPAPI_API_KEY = os.environ["SERPAPI_API_KEY"] | |
openai_client = openai.OpenAI(api_key=OPENAI_API_KEY) | |
API_URL = "https://sks7h7h5qkhoxwxo.us-east-1.aws.endpoints.huggingface.cloud" | |
headers = { | |
"Accept" : "application/json", | |
"Content-Type": "application/json" | |
} | |
def query(payload): | |
response = requests.post(API_URL, headers=headers, json=payload) | |
return response.json() | |
def llama2_7b_ysa(prompt: str) -> str: | |
output = query({ | |
"inputs": prompt, | |
"parameters": {} | |
}) | |
response = output[0]['generated_text'] | |
return response | |
# Initialize chat history | |
if "messages" not in st.session_state: | |
st.session_state.messages = [] | |
# Display chat messages from history on app rerun | |
for message in st.session_state.messages: | |
with st.chat_message(message["role"]): | |
st.markdown(message["content"]) | |
with st.expander("Instructions"): | |
st.sidebar.markdown( | |
r""" | |
# π Streamlit + Hugging Face Demo π€ | |
## Introduction π | |
This demo showcases how to interact with Large Language Models (LLMs) on Hugging Face using Streamlit. | |
""" | |
) | |
option = st.sidebar.selectbox( | |
"Which task do you want to do?", | |
("Sentiment Analysis", "Medical Summarization", "Llama2 on YSA", "ChatGPT", "ChatGPT (with Google)"), | |
) | |
clear_button = st.sidebar.button("Clear Conversation", key="clear") | |
st.sidebar.write("---") | |
st.sidebar.markdown("Yiqiao Yin: [Site](https://www.y-yin.io/) | [LinkedIn](https://www.linkedin.com/in/yiqiaoyin/)") | |
# Reset everything | |
if clear_button: | |
st.session_state.messages = [] | |
# React to user input | |
if prompt := st.chat_input("What is up?"): | |
# Display user message in chat message container | |
st.chat_message("user").markdown(prompt) | |
# Add user message to chat history | |
st.session_state.messages.append({"role": "user", "content": prompt}) | |
with st.spinner("Wait for it..."): | |
if option == "Sentiment Analysis": | |
pipe_sentiment_analysis = pipeline("sentiment-analysis") | |
if prompt: | |
out = pipe_sentiment_analysis(prompt) | |
final_response = f""" | |
Prompt: {prompt} | |
Sentiment: {out[0]["label"]} | |
Score: {out[0]["score"]} | |
""" | |
elif option == "Medical Summarization": | |
pipe_summarization = pipeline( | |
"summarization", model="Falconsai/medical_summarization" | |
) | |
if prompt: | |
out = pipe_summarization(prompt) | |
final_response = out[0]["summary_text"] | |
elif option == "Llama2 on YSA": | |
if prompt: | |
out = llama2_7b_ysa(query=prompt) | |
engineered_prompt = f""" | |
The user asked the question: {prompt} | |
We have found relevant content: {out} | |
Answer the user question based on the above content in paragraphs. | |
""" | |
final_response = call_chatgpt(query=engineered_prompt) | |
elif option == "ChatGPT": | |
if prompt: | |
out = call_chatgpt(query=prompt) | |
final_response = out | |
elif option == "ChatGPT (with Google)": | |
if prompt: | |
ans_langchain = call_langchain(prompt) | |
prompt = f""" | |
Based on the internet search results: {ans_langchain}; | |
Answer the user question: {prompt} | |
""" | |
out = call_chatgpt(query=prompt) | |
final_response = out | |
else: | |
final_response = "" | |
response = f"{final_response}" | |
# Display assistant response in chat message container | |
with st.chat_message("assistant"): | |
st.markdown(response) | |
# Add assistant response to chat history | |
st.session_state.messages.append({"role": "assistant", "content": response}) | |