eagle0504 commited on
Commit
8d87756
1 Parent(s): 1f7869d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +35 -24
app.py CHANGED
@@ -8,31 +8,35 @@ from transformers import pipeline
8
  from transformers import AutoTokenizer, AutoModelForCausalLM
9
 
10
  from helpers.foundation_models import *
 
 
11
 
12
  OPENAI_API_KEY = os.environ["OPENAI_API_KEY"]
13
  SERPAPI_API_KEY = os.environ["SERPAPI_API_KEY"]
14
  openai_client = openai.OpenAI(api_key=OPENAI_API_KEY)
15
 
16
 
17
- # tokenizer = AutoTokenizer.from_pretrained("eagle0504/llama-2-7b-miniguanaco")
18
- # model = AutoModelForCausalLM.from_pretrained("eagle0504/llama-2-7b-miniguanaco")
19
-
 
 
20
 
21
- # def generate_response_from_llama2(query):
22
 
23
- # # Tokenize the input text
24
- # input_ids = tokenizer.encode(query, return_tensors="pt")
 
25
 
26
- # # Generate a response
27
- # # Adjust the parameters like max_length according to your needs
28
- # output = model.generate(input_ids, max_length=50, num_return_sequences=1, temperature=0.7)
29
 
30
- # # Decode the output to human-readable text
31
- # generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
 
 
 
32
 
33
- # # output
34
- # return generated_text
35
 
 
36
 
37
  # Initialize chat history
38
  if "messages" not in st.session_state:
@@ -59,7 +63,7 @@ with st.expander("Instructions"):
59
 
60
  option = st.sidebar.selectbox(
61
  "Which task do you want to do?",
62
- ("Sentiment Analysis", "Medical Summarization", "ChatGPT", "ChatGPT (with Google)"),
63
  )
64
 
65
 
@@ -87,7 +91,7 @@ if prompt := st.chat_input("What is up?"):
87
  pipe_sentiment_analysis = pipeline("sentiment-analysis")
88
  if prompt:
89
  out = pipe_sentiment_analysis(prompt)
90
- doc = f"""
91
  Prompt: {prompt}
92
  Sentiment: {out[0]["label"]}
93
  Score: {out[0]["score"]}
@@ -98,15 +102,22 @@ if prompt := st.chat_input("What is up?"):
98
  )
99
  if prompt:
100
  out = pipe_summarization(prompt)
101
- doc = out[0]["summary_text"]
102
- # elif option == "Llama2":
103
- # if prompt:
104
- # out = generate_response_from_llama2(query=prompt)
105
- # doc = out
 
 
 
 
 
 
 
106
  elif option == "ChatGPT":
107
  if prompt:
108
  out = call_chatgpt(query=prompt)
109
- doc = out
110
  elif option == "ChatGPT (with Google)":
111
  if prompt:
112
  ans_langchain = call_langchain(prompt)
@@ -116,11 +127,11 @@ if prompt := st.chat_input("What is up?"):
116
  Answer the user question: {prompt}
117
  """
118
  out = call_chatgpt(query=prompt)
119
- doc = out
120
  else:
121
- doc = ""
122
 
123
- response = f"{doc}"
124
  # Display assistant response in chat message container
125
  with st.chat_message("assistant"):
126
  st.markdown(response)
 
8
  from transformers import AutoTokenizer, AutoModelForCausalLM
9
 
10
  from helpers.foundation_models import *
11
+ import requests
12
+
13
 
14
  OPENAI_API_KEY = os.environ["OPENAI_API_KEY"]
15
  SERPAPI_API_KEY = os.environ["SERPAPI_API_KEY"]
16
  openai_client = openai.OpenAI(api_key=OPENAI_API_KEY)
17
 
18
 
19
+ API_URL = "https://sks7h7h5qkhoxwxo.us-east-1.aws.endpoints.huggingface.cloud"
20
+ headers = {
21
+ "Accept" : "application/json",
22
+ "Content-Type": "application/json"
23
+ }
24
 
 
25
 
26
+ def query(payload):
27
+ response = requests.post(API_URL, headers=headers, json=payload)
28
+ return response.json()
29
 
 
 
 
30
 
31
+ def llama2_7b_ysa(prompt: str) -> str:
32
+ output = query({
33
+ "inputs": prompt,
34
+ "parameters": {}
35
+ })
36
 
37
+ response = output[0]['generated_text']
 
38
 
39
+ return response
40
 
41
  # Initialize chat history
42
  if "messages" not in st.session_state:
 
63
 
64
  option = st.sidebar.selectbox(
65
  "Which task do you want to do?",
66
+ ("Sentiment Analysis", "Medical Summarization", "Llama2 on YSA", "ChatGPT", "ChatGPT (with Google)"),
67
  )
68
 
69
 
 
91
  pipe_sentiment_analysis = pipeline("sentiment-analysis")
92
  if prompt:
93
  out = pipe_sentiment_analysis(prompt)
94
+ final_response = f"""
95
  Prompt: {prompt}
96
  Sentiment: {out[0]["label"]}
97
  Score: {out[0]["score"]}
 
102
  )
103
  if prompt:
104
  out = pipe_summarization(prompt)
105
+ final_response = out[0]["summary_text"]
106
+ elif option == "Llama2 on YSA":
107
+ if prompt:
108
+ out = llama2_7b_ysa(query=prompt)
109
+ engineered_prompt = f"""
110
+ The user asked the question: {prompt}
111
+
112
+ We have found relevant content: {out}
113
+
114
+ Answer the user question based on the above content in paragraphs.
115
+ """
116
+ final_response = call_chatgpt(query=engineered_prompt)
117
  elif option == "ChatGPT":
118
  if prompt:
119
  out = call_chatgpt(query=prompt)
120
+ final_response = out
121
  elif option == "ChatGPT (with Google)":
122
  if prompt:
123
  ans_langchain = call_langchain(prompt)
 
127
  Answer the user question: {prompt}
128
  """
129
  out = call_chatgpt(query=prompt)
130
+ final_response = out
131
  else:
132
+ final_response = ""
133
 
134
+ response = f"{final_response}"
135
  # Display assistant response in chat message container
136
  with st.chat_message("assistant"):
137
  st.markdown(response)