Spaces:
Sleeping
Sleeping
File size: 11,593 Bytes
893ed02 d202149 893ed02 6e8dad4 c069834 2d31353 cbd4340 da3de0a 2d31353 cbd4340 2d31353 cbd4340 2d31353 cbd4340 95a0a03 da1d261 2d31353 4e27e6a da3de0a 2d31353 4e27e6a da1d261 4e27e6a da3de0a 4e27e6a 95a0a03 cbd4340 95a0a03 4e27e6a 95a0a03 3d6b7f5 4e27e6a 3d6b7f5 4e27e6a 95a0a03 4f0bf15 da1d261 d202149 da1d261 9b51fef da1d261 9ede15d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
import streamlit as st
import pandas as pd
import numpy as np
import random
from datetime import datetime, timedelta
# Seed for reproducibility
np.random.seed(42)
# Function to generate synthetic BreastCancer data
def generate_breast_cancer_data(num_patients):
primary_keys = [f"PPK_{i+1:05d}" for i in range(num_patients)]
ages = []
menopausal_status = []
tumor_sizes = []
lymph_nodes = []
grades = []
stages = []
er_status = []
pr_status = []
her2_status = []
ki67_level = []
tnbc_status = []
brca_mutation = []
overall_health = []
genomic_score = []
treatment = []
for i in range(num_patients):
age = int(np.random.normal(60, 10))
age = max(30, min(age, 80))
ages.append(age)
menopausal = "Post-menopausal" if age >= 50 else "Pre-menopausal"
menopausal_status.append(menopausal)
tumor_size = round(np.random.lognormal(mean=0.7, sigma=0.5), 2)
tumor_sizes.append(tumor_size)
lymph_node = (
"Positive"
if (tumor_size > 2.0 and np.random.rand() < 0.6)
or (tumor_size <= 2.0 and np.random.rand() < 0.3)
else "Negative"
)
lymph_nodes.append(lymph_node)
grade = np.random.choice([1, 2, 3], p=[0.1, 0.4, 0.5] if tumor_size > 2.0 else [0.3, 0.5, 0.2])
grades.append(grade)
if tumor_size <= 2.0 and lymph_node == "Negative":
stage = "I"
elif (tumor_size > 2.0 and tumor_size <= 5.0) and lymph_node == "Negative":
stage = "II"
elif lymph_node == "Positive" or tumor_size > 5.0:
stage = "III"
else:
stage = "II"
if np.random.rand() < 0.05:
stage = "IV"
stages.append(stage)
er = np.random.choice(["Positive", "Negative"], p=[0.75, 0.25])
pr = "Positive" if er == "Positive" and np.random.rand() > 0.1 else "Negative"
er_status.append(er)
pr_status.append(pr)
her2 = np.random.choice(["Positive", "Negative"], p=[0.3, 0.7] if grade == 3 else [0.15, 0.85])
her2_status.append(her2)
ki67 = "High" if grade == 3 and np.random.rand() < 0.8 else "Low"
ki67_level.append(ki67)
tnbc = "Positive" if er == "Negative" and pr == "Negative" and her2 == "Negative" else "Negative"
tnbc_status.append(tnbc)
brca = "Positive" if (tnbc == "Positive" or age < 40) and np.random.rand() < 0.2 else "Negative"
brca_mutation.append(brca)
health = "Good" if age < 65 and np.random.rand() < 0.9 else "Poor"
overall_health.append(health)
recurrence_score = (
np.random.choice(["Low", "Intermediate", "High"], p=[0.6, 0.3, 0.1])
if er == "Positive" and her2 == "Negative"
else "N/A"
)
genomic_score.append(recurrence_score)
if stage in ["I", "II"]:
if tnbc == "Positive":
treat = "Surgery, Chemotherapy, and Radiation Therapy"
elif er == "Positive" and recurrence_score != "N/A":
if recurrence_score == "High":
treat = "Surgery, Chemotherapy, Hormone Therapy, and Radiation Therapy"
elif recurrence_score == "Intermediate":
treat = "Surgery, Consider Chemotherapy, Hormone Therapy, and Radiation Therapy"
else:
treat = "Surgery, Hormone Therapy, and Radiation Therapy"
elif her2 == "Positive":
treat = "Surgery, HER2-Targeted Therapy, Chemotherapy, and Radiation Therapy"
else:
treat = "Surgery, Chemotherapy, and Radiation Therapy"
elif stage == "III":
treat = (
"Neoadjuvant Chemotherapy, Surgery, Radiation Therapy"
+ (", HER2-Targeted Therapy" if her2 == "Positive" else "")
+ (", Hormone Therapy" if er == "Positive" else "")
)
else:
treat = "Systemic Therapy (Palliative Care)"
treatment.append(treat)
breast_cancer_data = {
"PRIMARY_PERSON_KEY": primary_keys,
"Age": ages,
"Menopausal Status": menopausal_status,
"Tumor Size (cm)": tumor_sizes,
"Lymph Node Involvement": lymph_nodes,
"Tumor Grade": grades,
"Tumor Stage": stages,
"ER Status": er_status,
"PR Status": pr_status,
"HER2 Status": her2_status,
"Ki-67 Level": ki67_level,
"TNBC Status": tnbc_status,
"BRCA Mutation": brca_mutation,
"Overall Health": overall_health,
"Genomic Recurrence Score": genomic_score,
"Treatment": treatment,
}
return pd.DataFrame(breast_cancer_data)
# Function to generate Members
def generate_members_from_breast_cancer(breast_cancer_df):
return pd.DataFrame({
"MEMBER_ID": breast_cancer_df["PRIMARY_PERSON_KEY"],
"PRIMARY_PERSON_KEY": breast_cancer_df["PRIMARY_PERSON_KEY"],
"MEM_GENDER": ["F"] * len(breast_cancer_df),
"MEM_ETHNICITY": np.random.choice(["Hispanic", "Non-Hispanic", None], len(breast_cancer_df)),
"MEM_RACE": np.random.choice(["White", "Black", "Asian", None], len(breast_cancer_df)),
"MEM_STATE": np.random.choice(["MI", "HI", "CA"], len(breast_cancer_df)),
"MEM_ZIP3": np.random.randint(100, 999, len(breast_cancer_df)),
})
# Function to generate Enrollments
def generate_enrollments_from_breast_cancer(breast_cancer_df):
return pd.DataFrame({
"PRIMARY_PERSON_KEY": breast_cancer_df["PRIMARY_PERSON_KEY"],
"MEM_STAT": np.random.choice(["ACTIVE", "INACTIVE"], len(breast_cancer_df)),
"PAYER_LOB": np.random.choice(["MEDICAID", "COMMERCIAL", "MEDICARE"], len(breast_cancer_df)),
"PAYER_TYPE": np.random.choice(["PPO", "HMO"], len(breast_cancer_df)),
"RELATION": np.random.choice(["SUBSCRIBER", "DEPENDENT"], len(breast_cancer_df)),
})
# Function to generate Services
def generate_services(num_services, primary_keys):
return pd.DataFrame({
"PRIMARY_PERSON_KEY": np.random.choice(primary_keys, num_services),
"SERVICE_SETTING": np.random.choice(["OUTPATIENT", "INPATIENT"], num_services),
"PROC_CODE": np.random.randint(1000, 9999, num_services),
"SERVICE_DATE": pd.date_range(start="2023-01-01", periods=num_services).to_numpy(),
"AMOUNT_BILLED": np.random.uniform(500, 15000, num_services),
"AMOUNT_PAID": np.random.uniform(500, 15000, num_services),
"CLAIM_STATUS": np.random.choice(["PAID", "DENIED", "PENDING"], num_services),
"RELATION": np.random.choice(["SUBSCRIBER", "DEPENDENT"], num_services),
})
# Function to generate Providers
def generate_providers(num_providers):
return pd.DataFrame({
"PROVIDER_ID": [f"PROV_{i+1:05d}" for i in range(num_providers)],
"PROV_NAME": np.random.choice(["Clinic A", "Clinic B", "Clinic C"], num_providers),
"PROV_STATE": np.random.choice(["MI", "HI", "CA"], num_providers),
"PROV_ZIP": np.random.randint(10000, 99999, num_providers),
"PROV_SPECIALTY": np.random.choice(["Oncology", "Radiology", "Surgery"], num_providers),
"PROV_TAXONOMY": np.random.choice(["208100000X", "207RE0101X"], num_providers),
})
# Function to generate Wearable Data
def generate_wearable_data(num_patients, num_measurements, start_datetime, time_interval, cancer_rate, chemo_brain_effect, primary_keys):
num_cancer_patients = int((cancer_rate / 100) * num_patients)
cancer_patients = set(random.sample(primary_keys, num_cancer_patients))
baseline_activity = 2000
baseline_heart_rate = 80
baseline_o2 = 98.2
activity_reduction_factor = (100 - chemo_brain_effect) / 100.0
chemo_heart_rate_increase = 5
data_rows = []
timestamps = [start_datetime + i * time_interval for i in range(num_measurements)]
for pkey in primary_keys:
is_cancer = pkey in cancer_patients
for ts in timestamps:
activity_var = random.randint(-300, 300)
hr_var = random.randint(-3, 3)
o2_var = random.uniform(-0.3, 0.3)
if is_cancer:
activity = int((baseline_activity + activity_var) * activity_reduction_factor)
heart_rate = baseline_heart_rate + hr_var + chemo_heart_rate_increase
else:
activity = baseline_activity + activity_var
heart_rate = baseline_heart_rate + hr_var
o2_sat = baseline_o2 + o2_var
activity = max(activity, 0)
heart_rate = max(heart_rate, 50)
o2_sat = max(o2_sat, 90.0)
data_rows.append([
pkey,
ts.strftime("%Y-%m-%d %H:%M:%S"),
activity,
heart_rate,
round(o2_sat, 1)
])
return pd.DataFrame(data_rows, columns=["PRIMARY_PERSON_KEY", "Measurement_Timestamp", "Activity_Level", "Heart_Rate", "O2_Saturation"])
# Main Streamlit App
st.title("Lokahi Synthetic Medical Data Generator ")
# Sliders
num_patients = st.slider("Number of Breast Cancer Patients to Generate", 10, 1000, 100)
num_measurements = st.slider("Measurements per Patient (Wearable Data)", 1, 100, 10)
num_services = st.slider("Number of Services to Generate", 10, 2000, 500)
num_providers = st.slider("Number of Providers to Generate", 10, 500, 100)
start_date = st.date_input("Wearable Data Start Date", value=datetime(2024, 12, 1))
start_time = st.time_input("Wearable Data Start Time", value=datetime(2024, 12, 1, 8, 0).time())
cancer_rate = st.slider("Percentage of Patients with Cancer (Wearable Data)", 0, 100, 30)
chemo_brain_effect = st.slider("Chemo Brain Impact on Activity Level (in % reduction)", 0, 50, 20)
if st.button("Generate Data"):
primary_keys = [f"PPK_{i+1:05d}" for i in range(num_patients)]
wearable_start_datetime = datetime.combine(start_date, start_time)
breast_cancer_df = generate_breast_cancer_data(num_patients)
members_df = generate_members_from_breast_cancer(breast_cancer_df)
enrollments_df = generate_enrollments_from_breast_cancer(breast_cancer_df)
services_df = generate_services(num_services, primary_keys)
providers_df = generate_providers(num_providers)
wearable_data = generate_wearable_data(
num_patients, num_measurements, wearable_start_datetime, timedelta(hours=1), cancer_rate, chemo_brain_effect, primary_keys
)
st.subheader("Breast Cancer Data")
st.dataframe(breast_cancer_df.head())
st.download_button("Download Breast Cancer Data", breast_cancer_df.to_csv(index=False), "breast_cancer.csv")
st.subheader("Members Data")
st.dataframe(members_df.head())
st.download_button("Download Members Data", members_df.to_csv(index=False), "members.csv")
st.subheader("Enrollments Data")
st.dataframe(enrollments_df.head())
st.download_button("Download Enrollments Data", enrollments_df.to_csv(index=False), "enrollments.csv")
st.subheader("Services Data")
st.dataframe(services_df.head())
st.download_button("Download Services Data", services_df.to_csv(index=False), "services.csv")
st.subheader("Providers Data")
st.dataframe(providers_df.head())
st.download_button("Download Providers Data", providers_df.to_csv(index=False), "providers.csv")
st.subheader("Wearable Data")
st.dataframe(wearable_data.head())
st.download_button("Download Wearable Data", wearable_data.to_csv(index=False), "wearable_data.csv")
|