edugp's picture
Support visualizing both sentences and whole documents. Smooth down color assignment in visualization.
a86046b
raw
history blame
1.07 kB
import os
import urllib.request
import kenlm
class KenlmModel:
def __init__(self, language):
download_kenlm_model(language)
self.model = kenlm.Model(f"{language}.arpa.bin")
@classmethod
def from_pretrained(cls, language: str):
return cls(language)
def get_perplexity(self, doc: str):
doc_log_score, doc_length = 0, 0
for line in doc.split("\n"):
log_score = self.model.score(line)
length = len(line.split()) + 1
doc_log_score += log_score
doc_length += length
return 10.0 ** (-doc_log_score / doc_length)
def download_kenlm_model(language: str):
root_url = "http://dl.fbaipublicfiles.com/cc_net/lm"
bin_name = f"{language}.arpa.bin"
model_name = f"{language}.sp.model"
bin_url = f"{root_url}/{bin_name}"
model_url = f"{root_url}/{model_name}"
if not os.path.isfile(bin_name):
urllib.request.urlretrieve(bin_url, bin_name)
if not os.path.isfile(model_name):
urllib.request.urlretrieve(model_url, model_name)